Zur Kurzanzeige

dc.creatorCostola, Michele
dc.creatorNofer, Michael
dc.creatorHinz, Oliver
dc.creatorPelizzon, Loriana
dc.date.accessioned2021-09-28T09:41:00Z
dc.date.available2021-09-28T09:41:00Z
dc.date.issued2020-09-15
dc.identifier.urihttps://fif.hebis.de/xmlui/handle/123456789/2394
dc.description.abstractThe possibility to investigate the impact of news on stock prices has observed a strong evolution thanks to the recent use of natural language processing (NLP) in finance and economics. In this paper, we investigate COVID-19 news, elaborated with the ”Natural Language Toolkit” that uses machine learning models to extract the news’ sentiment. We consider the period from January till June 2020 and analyze 203,886 online articles that deal with the pandemic and that were published on three platforms: MarketWatch.com, Reuters.com and NYtimes.com. Our findings show that there is a significant and positive relationship between sentiment score and market returns. This result indicates that an increase (decrease) in the sentiment score implies a rise in positive (negative) news and corresponds to positive (negative) market returns. We also find that the variance of the sentiments and the volume of the news sources for Reuters and MarketWatch, respectively, are negatively associated to market returns indicating that an increase of the uncertainty of the sentiment and an increase in the arrival of news have an adverse impact on the stock market.
dc.rightsAttribution-ShareAlike 4.0 International
dc.rights.urihttp://creativecommons.org/licenses/by-sa/4.0/
dc.subjectFinancial Markets
dc.titleMachine Learning Sentiment Analysis, Covid-19 News and Stock Market Reactions
dc.typeWorking Paper
dcterms.referenceshttps://fif.hebis.de/xmlui/handle/123456789/1902?Survey_CNHP_2020
dc.source.filename288_SSRN-id3690922
dc.identifier.safeno288
dc.subject.keywordscovid-19 news
dc.subject.keywordssentiment analysis
dc.subject.keywordsstock markets
dc.subject.jelG10
dc.subject.jelG14
dc.subject.jelG15
dc.identifier.doi10.2139/ssrn.3690922


Dateien zu dieser Ressource

DateienGrößeFormatAnzeige

Zu diesem Dokument gibt es keine Dateien.

Das Dokument erscheint in:

Zur Kurzanzeige

Attribution-ShareAlike 4.0 International
Solange nicht anders angezeigt, wird die Lizenz wie folgt beschrieben: Attribution-ShareAlike 4.0 International