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Abstract

The pricing of an ambiguous asset, whose cash flow stream is uncertain, may be affected

by three factors: the belief regarding the realization likelihood of cash flows, the subjec-

tive attitude towards risk, and the attitude towards ambiguity. While previous literature

looks at the total price discount under ambiguity, this paper investigates with labora-

tory experiments how much effect each factor can induce. We apply both non-parametric

and parametric methods to cleanly separate the belief effects, the risk premiums, and

the ambiguity premiums from each other. Both methods lead to similar results: Overall,

subjects have substantial ambiguity aversion, and ambiguity premiums account for the

largest price deviation component when the degree of ambiguity is high. As information

accumulates, ambiguity premiums decrease. We also find that beliefs do influence prices

under ambiguity. This is not because beliefs are biased towards either good or bad scenar-

ios per se, but because subjects display sticky belief updating as new information becomes

available. The clear separation performed in this paper between belief and attitude also

enables a more accurate estimation of the parameter of ambiguity aversion compared to

previous studies, since the effect of beliefs is partialled out. Overall, we find empirically

that both factors, belief and attitude towards ambiguity, are important factors in pricing

under ambiguity.
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1 Introduction

Ambiguity describes a situation in which some outcomes of an event have unknown/non-singular

probability measurements (Ellsberg 1961; Epstein 1999; Knight 1921; Savage 1954, to name a

few). Ubiquitous in financial markets, the presence of ambiguity is shown to affect individuals’

behaviors such as market participation (Cao et al. 2005; Easley and O’Hara 2009), asset pric-

ing (Bossaerts et al. 2010), and portfolio choices (Campanale 2011; Dow and da Costa Werlang

1992; Peijnenburg 2014). However, fundamental questions such as how each influencing factor

determines individuals’ decisions under ambiguity are not yet thoroughly studied. In partic-

ular, three factors fall into this discussion: belief, attitude towards risk, and attitude towards

ambiguity. In theory, these three factors are mutually independent concepts, and thus their

effects on decisions are separable (Izhakian 2020; Izhakian and Benninga 2011; Klibanoff et al.

2005). However, to the best of our knowledge, clean separation between the effect of belief and

the effect of attitude is not yet achieved in empirical studies of ambiguity. Failing to disen-

tangle beliefs from attitudes may lead to incorrect attitude characterizations and subsequently

confound the estimation of the effect of attitude. Therefore, it is imperative to disentangle

beliefs from attitudes and measure their effects separately. This paper aims to fill this gap.

This paper inherits the understanding that belief, attitude towards risk, and attitude

towards ambiguity are three mutually separable factors which influence individuals’ decisions

independently. The focus of this paper is to cleanly measure the effect of each individual factor

(the effects are denoted as belief effect, risk premium, and ambiguity premium, respectively.).

This paper contributes to the current literature in three aspects. First, the clean measurements

allow us to investigate the qualitative feature (eg. the sign) and the quantitative feature (eg.

the magnitude) of each individual effect. This sheds some light on some fundamental questions

in ambiguity studies: To what extent are decisions attitude-driven, and to what extent are

belief-induced. Second, we identify how large the bias could be when estimating risk attitude

and ambiguity attitude without isolating the effect of beliefs. This provides a view regarding

how large the bias could be in the previous literature which estimates ambiguity premium or risk

premium ignoring the belief effects. Third, we cleanly estimate parameters governing attitudes

in the KMM model (Klibanoff et al. 2005), with belief effects being partialled out. This provides

a reference of parameterization for studies conducting numerical simulations under the KMM

model.

Beliefs can be defined as subjective evaluations about the ambiguous environment. It

describes, in a decision maker’s (DM’s) opinion, how likely a possible scenario is to occur.

On the other hand, attitude towards risk and attitude towards ambiguity capture a DM’s

preference. For instance, aversion towards risk describes that a DM prefers a less risky situation

to a more risky situation. Analogously, aversion towards ambiguity describes that a DM prefers

a less ambiguous situation to a more ambiguous situation. As an empirical research, this paper

uses laboratory experiments to investigate beliefs, attitude towards risk, and attitude towards

ambiguity of each subject participating in the experiment. In the experiments, subjects are

told that there is a binary lottery whose outcome is either winning or losing. Subjects are also

told that the lottery pays out a positive financial reward (eg. 3.75 Euro) in case of winning, and
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that the lottery pays out zero in case of losing. However, neither the winning probability nor

the losing probability of the lottery is known to any subject. In this way, an ambiguous lottery

is set up. To elicit beliefs, we use guess games to investigate a subject’s belief regarding the

winning probability of the ambiguous lottery. To elicit ambiguity attitude and risk attitude,

we use choice lists to elicit a subject’s certainty equivalents (CE) of the ambiguous lottery and

her CEs of some purely risky lotteries, respectively. The elicited CEs carry the information

of a subject’s ambiguity attitude and/or risk attitude. To better analyze how subjects’ beliefs

and attitudes affect their decisions on CEs, we introduce an all-neutral benchmark CE which

is induced by a neutral belief, risk neutrality, and ambiguity neutrality. Departure from the

benchmark CE generates price deviation. According to the source of the deviation, the price

deviation can be decomposed into three components: the belief effect (i.e. price deviation

ascribed to a subject’s personal belief deviating from the neutral benchmark belief), the risk

premium (i.e. price deviation arising from a subject’s non-neutral attitude towards risk), and

the ambiguity premium (i.e. price deviation arising from a subject’s non-neutral attitude

towards ambiguity). The goal of the paper comes down to disentangling the three components

of each subject’s price deviation. This paper does it with two methods: a non-parametric

method and a parametric method.

As a first analysis, we disentangle the three price deviation components with a non-

parametric method (the results are directly derived from the experiment data). The experiment

adopts a particular design: First, in a guess game, a subject reports her personal belief regard-

ing the winning probability of the ambiguous lottery. Second, in a choice list, she reports her

CE of the ambiguous lottery for which she just reports her personal belief. Third, in another

choice list, the subject reports her CE of a purely risky lottery whose winning probability is

equal to her reported personal belief. Due to this particular design (three “parallel” games in

relation to one common personal belief), for each subject we can disentangle the three price

deviation components, directly computed from the responses of the three “parallel” games (for

details, see Chapter 3.1). To the best of our knowledge, such a clean separation of the price

deviation components is not yet adopted in previous literature. This method is simple to im-

plement and very effective for the investigation of the three deviation components. Playing

these games are also cognitively easy for a subject. Such simplicity is conducive to the data

quality. In addition, the non-parametric method does not require any model specification or

parameter estimation, which is beneficial for the precision of this analysis. In particular, we are

interested in the price deviations at two specific points in time: when no information regarding

the winning probability of the ambiguous lottery is revealed (i.e. the degree of ambiguity is

high), and after some information is provided but ambiguity still remains (i.e. the degree of

ambiguity is comparably low).

As a second analysis, we apply a parametric method built on the KMM model. The

parametric method estimates the parameters governing risk attitude and ambiguity attitude,

respectively. The KMM model provides a theoretical foundation for the separation between

beliefs and attitudes: risk attitude and ambiguity attitude are governed by different utility

functions; Beliefs stay outside of the utility functions, and thus stay separated from attitudes.

We apply the two-order probability system to formalize a subject’s personal belief regarding the
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winning probability of the ambiguous lottery. The conceived second-order probability, which

describes the likelihood that some value is the true winning probability, constitutes a subject’s

personal belief. In the parametric analysis, we first recover a subject’s personal beliefs following

the belief estimation method in Li and Wilde (2020). Subsequently, using the recovered personal

beliefs as inputs, we estimate the parameter governing risk attitude and the parameter governing

ambiguity attitude. Such estimations are iterated using different utility specifications: for the

utility function which governs the risk attitude, a functional form representing constant relative

risk aversion (CRRA) is chosen; for the utility which governs the ambiguity attitude, both

functional form representing constant relative ambiguity aversion (CRAA) and functional form

representing constant absolute ambiguity aversion (CAAA) are considered. The choice of the

specifications refers to those in Klibanoff et al. (2005) and Izhakian and Benninga (2011). These

specifications cover the main categories of utility functions applicable to the KMM model. Such

variation in utility specification also provides a boarder view to understand belief effects and

attitude effects under ambiguity.

With the parametric method, we further identify how large the bias could be when esti-

mating risk attitude and ambiguity attitude without considering the effect of belief. We iterate

the estimation of attitude parameters by assuming that a subject has a neutral belief. The

neutral belief is characterized by a uniformly distributed initial prior and is updated following

Bayes’ rule. The differences between the estimated parameters based on the recovered belief

and the estimated parameters based on the neutral belief capture the bias in attitude estimation

if ignoring the effect of belief.

Our paper is original in the sense that there exist little ambiguity literature which empir-

ically measures belief effect, risk premium and ambiguity premium with sound cleanness. A

sizable number of literature focuses on the interplay of beliefs and attitudes instead. One stream

of theoretical literature models beliefs and attitudes intertwined (Ghirardato et al. 2004; Gilboa

and Schmeidler 1989; Maccheroni et al. 2006; Savage 1954; Schmeidler 1989). As a result, ambi-

guity premiums cannot be identified cleanly isolated from belief effects. Also in many empirical

studies, beliefs are interpreted as representations of subjects’ ambiguity attitudes (Abdellaoui

et al. 2011; Ahn et al. 2014; Baillon et al. 2018a,b; Dimmock et al. 2016). In this literature,

beliefs and attitudes are conceptually interchangeable, and thus their effects are empirically

inseparable. On the other hand, some theoretical literature achieves the separation of beliefs

and attitudes under ambiguity. This includes Gollier (2011), Izhakian and Benninga (2011),

Izhakian (2020), Maccheroni et al. (2013), and Taboga (2005). These authors adopt the KMM

model and identify effects of attitudes conditional on belief characterizations. These papers,

however, do not identify belief effects explicitly. A limited number of empirical works touch the

separation of beliefs and attitudes under ambiguity. Cubitt et al. (2018) elicit subjective beliefs

regarding the winning probability of an ambiguous lottery as well as the subjective CEs of this

lottery. The payoff of the lottery is determined by a random draw from an urn, whose composi-

tion is initially unknown to any subject. A subject’s belief is elicited after a short private peek

into the urn, and her ambiguity premium is estimated based on the elicited belief. The design

of short private peeks indicates that the information received by each subject is idiosyncratic,

and thus unobservable and uncontrollable from an experimenter’s point of view. This makes
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the benchmark for extracting belief effect also idiosyncratic and unobservable. In our paper, all

information provided to subjects are objective, without any idiosyncratic noise. This leads to

an objective benchmark for extracting belief effect, and a more precise measurement of belief

effects. In sum, our paper cleanly separates and measures belief effects, risk premiums and

ambiguity premiums in an empirical set-up. This is original in the studies of ambiguity.

This paper reaches the following findings: (1) The belief effects on average tend to be

zero when the degree of ambiguity is high, indicating that neither substantial pessimism nor

substantial optimism is found in initial beliefs. As new information accumulates, belief effects

emerge. This is driven by the under-adjustment of beliefs in updating compared with what

Bayes’ rule implies. (2) When the degree of ambiguity is high, ambiguity premiums are on av-

erage significantly positive. Overall, the ambiguity premiums are evidently larger than the risk

premiums and the belief effects in a completely ambiguous environment. As new information

accumulates, ambiguity premiums decrease along with the resolution of ambiguity. (3) There

exists heterogeneity in all three price deviation components. The heterogeneity of ambiguity

premium decreases as new information accumulates. (4) Independent from utility specification,

the estimated parameter which governs ambiguity attitude implies ambiguity aversion; Ignor-

ing the effect of belief leads to a biased estimation of risk attitude parameter and ambiguity

attitude parameter, regardless of utility specification.

The rest of the paper is organized as follows: Section 2 introduces the experiment design.

Section 3 derives the price deviation and its three components with a non-parametric method.

Section 4 derives the price deviation and its three components with a parametric method.

Section 5 concludes.

2 Experiment design

This paper gathers data from a series of laboratory experiments1. In the experiments, the

ambiguous environment is operationalized by an urn. Subjects participating in the experiments

are told that the urn contains in total 100 balls, and that each ball is either a white ball or a

black ball. However, neither the number of white balls nor the number of black balls is known

to any subject. No information is conveyed to any subject regarding how the urn is assembled.

A binary lottery, whose outcome is either winning or losing, is designed based on this urn.

Subjects are told that the payoff of the lottery is determined by a random draw from the urn:

in case that a white ball is drawn out, the lottery pays out a positive financial reward (i.e.

3.75 Euro); in case that a black ball is drawn out, the lottery pays out zero. Therefore, an

ambiguous lottery (built on the ambiguous urn) is set up. This design also implies that neither

the winning probability nor the losing probability of the lottery is known to any subject.

A complete experiment session includes several parts (see Table 1). This paper uses data

collected from two parts: the guess games which investigate subjects’ personal beliefs regarding

the winning probability of the ambiguous lottery, and the choice lists which investigate subjects’

attitudes towards risk and towards ambiguity.

1This paper shares the experiment design and data with Li and Wilde (2020).
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2.1 Guess games

A guess game is designed to track down a subject’s personal beliefs about the composition

of the ambiguous urn at some specific points in time. Equivalently, it is also to investigate a

subject’s conceived winning probability of the ambiguous lottery. In a guess game, a subject

needs to answer the following question: standing at this point, how many white balls do you

think are there in the urn? A subject enters an integer between zero and 100 (both ends are

inclusive) to report her belief.

Guess games are played several times in each experiment session. Every guess game is

followed by a random draw from the ambiguous urn. In each draw, one ball is drawn out

from the urn and its color, either white or black, is displayed to the subjects. Then the ball is

immediately put back into the urn (draw with replacement). Table 1 summarizes the sequence

of the guess games and draw implementations: A subject first plays the initial guess game before

any draw has occurred, denoted as G0. Then the first draw is implemented. This sequence, one

guess game followed by one draw implementation, repeats 15 times. In addition, in all Sessions

except Session I, an additional guess game, G15, is played after all 15 draws are observed2.

Table 2 column (5) reports the played guess games by session. As the notation implies, when

a subject plays guess game Gn, she has already observed n times of draws (n = 0, 1, · · · 15),

where n = 0 denotes no draw is observed yet. The belief reported in guess game Gn can be

seen as the updated belief based on the learning of the n-time draw history. The past draw

history, if any, is displayed on screen for subjects’ reference. Figure 1, as an example, displays

the screen-shot of guess game G5, in which five draws are observed and this history is displayed

at the bottom of the screen for subjects’ reference.

Subjects participating in the same experiment session may be grouped into several markets.

Table 2 column (2) reports this information. In markets 1-11, each market implements its own

draws, and thus eleven independent draw history paths are generated. A subject can only

observe the draw history of the market which she belongs to. For the 19 subjects in Session

VII, each of them observes her own draws. This generates another 19 independent draw history

paths. Table 2 column (8) summarizes this information. In total, 30 draw history paths are

generated and 102 belief dynamics (one for each subject) are recorded.

The true proportion of white balls in the ambiguous urn is fixed at 40 for all sessions

and for all subjects (of course, this is unknown to the subjects throughout the experiment).

The choice of 40, rather than any other value, is explained in Li and Wilde (2020). Subjects

are incentivized in the way that every time a subject enters the correct number of white balls

(=40) in the guess game, she is rewarded with two Euro, otherwise zero. In other words, a

subject is incentivized to insert the mode value of their updated belief distribution in each

guess game. The incentive compatibility of this design is extensively discussed in Li and Wilde

(2020). In general, eliciting the mode value of a distribution is incentive compatible (Hurley

and Schogren 2005). The earning from the guess games is only announced to the subjects at the

2Therefore, subjects in Session I go through the sequence: Guess game G0, first draw, G1, second draw, · · · ,
G14, 15th draw. Subjects in Session II-VII go through the same sequence, plus G15 (one additional guess game

after all 15 draws).
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end of the experiment, hence the ambiguous feature of the urn sustains throughout the entire

experiment. It is worth mentioning that the guess games only track down a subject’s belief

updating dynamics in the ambiguous environment, independent from her attitude towards risk

and towards ambiguity. Attitude plays a role in decisions and becomes observable only when

subjects actually choose between alternatives. Since the guess games do not imply any deci-

sions between any alternatives, they are solely belief-related and independent from attitudes.

Therefore, based on a subject’s guess game responses, we can recover her belief dynamics and

can cleanly isolate the effects ascribed to beliefs.

2.2 Choice lists

The choice lists compose another part of the experiment. Choice lists are designed to investigate

subjects’ conceived CEs of various risky lotteries, and conceived CEs of the ambiguous lottery

after a certain number of draws. The design of the choice lists inherits the spirit of Becker et al.

(1964) (well known as the BDM method), and resembles the paradigm in Moore and Eckel

(2006), Cubitt et al. (2018) and Baillon and Placido (2019).

A subject is asked to choose between a sure positive payment (Option A) and a lottery

(Option B). The lottery has a binary payoff scheme. The payout is determined by a random

draw from an urn, which contains 100 balls. Each ball is either a white ball or a black ball. If

a white ball is drawn out (defined as winning), the lottery pays out 1500 Experiment currency

units3 (ECU, hereafter). If a black ball is drawn out (defined as losing), the lottery pays out

zero. In a choice list, a subject needs to compare 1500 different sure payments (1, 2, · · · , 1500

ECU) with one specific lottery. Figure 2a presents the screenshot of a choice list. In practice,

it is too tedious for a subject to submit 1500 answers in a single game. In fact, a subject is

asked to report only one number, denoted as the X-value (X ∈ {1, 2, · · · 1500}). By choosing a

X-value, a subject announces that whenever the sure payment is lower than this X-value, she

prefers playing the lottery; whenever the sure payment is equal to or larger than this X-value,

she prefers accepting the sure payment directly. In other words, a subject’s reported X-value

denotes her switching point from Option B (playing the lottery) to Option A (accepting the sure

payment). This paradigm already assumes the completeness and transitivity of the subjective

preference. This means that a subject is guided to act rationally in a choice list in the sense that

she is only allowed to switch from Option B to Option A at most once, and is never allowed to

switch back to Option B again. Following the spirit of the BDM method, a subject’s reported

X-value is her conceived CE of the lottery.

Two kinds of choice lists are designed regarding the Option B lottery (The layout of Option

A is invariant across all choice lists). In the first category, Option B is some purely risk lottery.

These choice lists are prefixed with letter R (as risky) and are called risk choice lists. In

each risk choice list, a specific urn composition (the number of white balls and the number of

black balls) is directly displayed on the screen, thus known to the subjects. Table 2 Column

(6) summarizes the risk choice lists in each experiment session. Among them, some Option

3The pre-announced exchange rate is 400 ECU=1 euro. Therefore 1500 ECU=3.75 euro. The exchange rate

applies to all parts of the experiment.
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B lotteries are predetermined. As an example, Figure 2a displays the screen-shot of the risk

choice list R50, where Option B is a 50-50 lottery. Analogously, R25 denotes the risk choice

list in which Option B is a lottery urn with 25 white balls and 75 black balls. R75 denotes the

risk choice list in which Option B is a lottery urn with 75 white balls and 25 black balls. We

choose 25 and 75 as the anchors so that subjects do not encounter too extreme situations (eg. 5

white balls or 95 white balls). At the same time, this choice facilitates a rather wide coverage of

lotteries, so that subjects’ decisions under very different situations can be observed, conducive to

the data variation. Unlike R50/R25/R75, Option B lotteries in R0/R15/Rml/Rbay are designed

to follow a subject’s reported guess game response or the draw history a subject observes. In

R0 (R15), Option B is a risky lottery (urn) whose number of white balls is equal to a subject’s

reported guess game response in G0 (G15). Thus, R0 (R15) investigates a subject’s certainty

equivalent of a risky lottery with an identical white-ball proportion as the one conceived by her

for the ambiguous urn before observing any draw (after observing 15 draws). Such design helps

us to easily isolate a subject’s ambiguity premium from the effects of belief and risk attitude

(for details, see Chapter 3). In addition, some sessions also include Rml and Rbay to increase

data variation. In Rml, Option B is a risky lottery whose number of white balls is equal to the

maximum likelihood update after a subject observes all draws4. In Rbay, Option B is a risky

lottery whose number of white balls is equal to the Bayesian update after a subject observes

all draws5.

For each choice list in the second category, the urn (lottery) in Option B is ambiguous.

The ambiguous urn is identical to the one applied in the guess games: subjects know that the

urn contains 100 balls, with either white or black color. The number of balls of either color is

unknown to any subject. These choice lists are prefixed with letter A (as ambiguous) and are

called ambiguity choice lists. The ambiguity choice lists differ from each other in terms of the

timing of play, i.e. how many draws are already observed. An denotes the ambiguity choice list

which is played after a subject observes n draw(s) from the ambiguous urn6. As a example,

Figure 2b displays the screen-shot of A5, the ambiguity choice list played after five draws. The

draw history, if any, is always displayed on the screen for subjects’ reference. Table 2 Column

(7) summarizes the ambiguity choice lists in each experiment session.

The incentivization method for the choice lists is as follows: after subjects finish all choice

lists, as first step, the experimenters randomly select a certain number of risk/ambiguity choice

lists to play for real (i.e. the earnings from these selected choice lists enter subjects’ final

payments.)7. As a second step, for each selected choice list, the experimenters randomly select

one of the 1500 versions of Option A, and resolve the lottery in Option B. For each subject, she

either receives the corresponding sure payment in Option A, if her reported X-value is lower than

4Suppose that a subject observes in total T draws, with k units of them being white draws, the maximum

likelihood update is equal to 100k/T .
5Assume that a subject starts with a uniformly distributed initial belief, and updates it in response to the

draw information by employing Bayes’ rule. The Bayesian update here refers to the mean value of the updated

belief distribution. Chapter 4 provides more details of belief updating.
6A0 denotes the ambiguity choice list played before any draw has occurred.
7The number of risk/ambiguity choice lists selected to play for real varies across experiment sessions. Table

2 Column (6)/(7) reports this information.
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or equal to the value of the selected Option A, or bears the lottery result, if her X-value is larger

than the value of the selected Option A. In essence, the second step is equivalent to the second

step of the BDM method (randomly selecting a number y to determine whether a subject takes

the sure payment equal to y or plays a lottery). It is well argued in Becker et al. (1964) that such

paradigm is incentive compatible: a subject maximizes her profit by reporting her true certainty

equivalent of the lottery in Option B. In practice, the experimenters conduct this part using

some physical urns (boxes containing chips written “white” and “black”, and a box containing

chips numbering 1, 2, · · · 1500). Random draws are executed by subjects themselves, monitored

by the experimenters. Such arrangement reduces subjects’ concern about the manipulation of

the urns. This procedure takes place at the very end of every experiment session, so that the

ambiguous feature of the urn (in the ambiguity choice lists) sustains throughout the experiment.

2.3 Other information

All laboratory experiments in this paper are computerized by Z-tree (Fischbacher 2007). In

total, seven sessions are conducted, with 102 participants altogether. The subjects are all ran-

domly selected from the subject pool of the Frankfurt Laboratory for Experimental Economic

Research (FLEX), Goethe University Frankfurt. Most subjects are students from Goethe Uni-

versity Frankfurt with various studying backgrounds, without previous experience in economics-

related experiments. Table 2 Column (1)-(4) summarize the distribution of subjects in each

session/market. At the beginning of each session, subjects are randomly assigned to PC ter-

minals in the laboratory and receive printed instructions. Some quizzes, a demonstration of

some physical lottery urns (in fact, boxes containing 100 chips with “white” or “black” written

on), and trial draws from risky urns are implemented to help the subjects fully understand

the concept of a lottery, guess games, and choice lists. The content of the ambiguous urn is

not observable to any subjects, and no draws from the ambiguous urn are implemented during

the demonstration. Therefore, when the guess game G0 and the ambiguity choice list A0 are

played, the lottery urn is completely ambiguous, as intended.

Apart from the guess games and choice lists, subjects of most sessions also participate in

asset trading. Table 2 Column (9) presents this information. Since the asset trading experiment

is not the main interest of this paper, we suppress an extensive introduction. An experiment

session concludes with a short questionnaire, followed by the final payment for each subject.

Table 1 summarizes the experiment procedure. A complete experiment session lasts about 2

hours and 15 minutes on average. The total earning from all parts is on average 31 Euro.

3 Price deviations: non-parametric analysis

In this chapter, we extract a subject’s price deviation when pricing the ambiguous asset. In this

first analysis, all price deviations are derived directly from the data of the experiments. Hence,

we name it the non-parametric analysis. For each subject, we derive the total price deviation

before any draw has occurred as well as after 15 draws are observed. Subsequently, we de-

compose the total price deviation into three components: the belief effect (i.e. price deviation
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ascribed to a subject’s personal belief in comparison with a neutral belief), the risk premium

(i.e. price deviation arising from a subject’s non-neutral attitude towards risk), and the am-

biguity premium (i.e. price deviation arising from a subject’s non-neutral attitude towards

ambiguity). Previously literature also finds price deviations (mostly price discount) when DMs

price ambiguous assets. However, it is rarely clear to what extent such price deviation can be

ascribed to a DM’s belief characterization and to a DM’s risk/ambiguity attitude, respectively.

Our experiment design, which allows us to clearly disentangle the three components of the total

price deviation, helps to answer these questions.

Among the many games played in a complete experiment session, a package of three

“parallel” games can be used to derive the three price deviations before any draw has occurred

(n = 0). These three games include: the guess game G0 (which elicits a subject’s personal

belief), the risk choice list R0 (which elicits a subject’s certainty equivalent of a risky lottery),

and the ambiguity choice list A0 (which elicits a subject’s certainty equivalent of the ambiguous

lottery). These two choice lists, R0 and A0, are called “parallel” to the guess game G0 since they

are both associated with the personal belief elicited in G0: R0 constructs the risky lottery with

the reported number of white balls in G0; when a subject plays A0, she reports her conceived

certainty equivalent (CE) for exactly the ambiguous urn for which her belief has been elicited in

G0. Therefore, for each subject i, {G0, R0, A0} constitute a package, and we call it Package 0.

Analogously, the three games which are played after all 15 draws are observed, {G15, R15, A15},
constitute another package, which we call it Package 15. Using a subject’s responses in Package

0 and Package 15, namely

Responses in Package 0: {whitei,0, Xi,R0 , Xi,A0} and

Responses in Package 15: {whitei,15, Xi,R15 , Xi,A15},

we can directly extract a subject’s total price deviation when pricing the ambiguous asset

before any draw has occurred as well as after 15 draws are implemented. Furthermore, for each

subject we can decompose the total price deviation into three components. The extraction

of the total price deviation as well as the decomposition of the three deviation components

are directly based on the raw data from the experiments, without any need for specifying a

model and estimating parameters. Therefore, this straightforward method avoids any possible

misspecification problem and estimation error. It can be expected to deliver high-quality results.

3.1 Total price deviation

First of all, we extract a subject’s total price deviation when pricing the ambiguous asset.

To compute the total price deviation, we first construct an all-neutral benchmark for each

subject i. The all-neutral benchmark is the CE induced by neutral beliefs, neutral risk attitude,

and neutral ambiguity attitude. Neutral beliefs imply unbiased initial beliefs (under complete

ambiguity) as well as neutral belief updating (neutrally incorporating new information from

the draws). Specially, we assume that benchmark belief under complete ambiguity (before

any draw has occurred) is that the proportion of white balls is equal to 0.5. Given the same

draw history as subject i observes, the benchmark (updated) beliefs duplicate the maximum
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likelihood (ML) updates. Thus, we can write:

MLi,0 = 0.5 (1)

MLi,15 = ki,15/15 (2)

i = 1, 2 · · ·N

where ki,15 denotes the number of white draws out of 15 draws, in the draw history observed

by subject i. The benchmark belief is assumed to be the mid-point 0.5 before any draw has

occurred, since this belief neither biases towards favorable situations (with the proportion of

white balls greater than 0.5) nor biases towards unfavorable situations (with the proportion

of white balls less than 0.5), thus satisfying the neutrality assumption. The assumption of

the ML updating is also in line with the neutrality and objectivity in belief updating. Since

the benchmark is induced by risk- and ambiguity-neutrality, the benchmark CEs should be

solely determined by the benchmark beliefs. In other words, MLi,n is equal to the all-neutral

benchmark CE regarding the ambiguous lottery in ambiguity choice list An. By comparing

subject i’s actual CE of the ambiguous asset in An (i.e. Xi,An) with the benchmark CE (i.e.

MLi,n), we define the total price deviation as follow:

TotalDevi,n =
MLi,n −Xi,An

MLi,n
(3)

i = 1, 2 · · ·N ; n = 0, 15

All reported Xi,An are standardized to [0, 1]. The total price deviation is a relative term, relative

to the benchmark CE. We focus on the relative form to allow comparability across subjects

observing different draw history paths. The results of TotalDevi,n are summarized in Table 3

Panel A. Figure 3 illustrates the distribution of TotalDevi,n for n = 0 and n = 15, respectively

(the first box under each n value). Overall, the total price deviation is significantly positive

before any draw has occurred, and tends to be negative after 15 draws. This is supported by

the results shown in Table 3. At n = 0, the mean value is significantly positive (mean=0.134;

P-value=0.000), and the median is slightly positive (median=0.040). At n = 15, the mean

value is negative (mean=-0.152) but less significant (P-value=0.013), and the median is only

slightly away from zero (median=-0.027). These results indicate that in a completely ambigu-

ous environment, overall subjects tend to price the ambiguous asset lower than the all-neutral

benchmark, which leads to a positive total price deviation. As information accumulates, on av-

erage the total price deviation decreases and even becomes slightly negative, indicating a higher

price compared with the benchmark. On an individual level, there exists large heterogeneity

(Figure 3). Before any draw has occurred, the total price deviation mostly spans within the

positive domain, which means that most subjects tend to price the ambiguous asset lower than

the benchmark. After 15 draws, the heterogeneity sustains, but the domain shifts downwards:

the total price deviation has a relatively wider coverage in the negative domain. This means

that more than half of the sample have a negative total price deviation, i.e. more than half of

the subjects price the asset higher than the benchmark.

As mentioned above, the total price deviation can be further decomposed into three com-

ponents: belief effect, risk premium, and ambiguity premium. Defining some new variables, we
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can write:

TotalDevi,n = BEi,n︸ ︷︷ ︸
belief effect

+ RPi,n︸ ︷︷ ︸
risk premium

+ APi,n︸ ︷︷ ︸
ambiguity premium

(4)

i = 1, 2 · · ·N ; n = 0, 15

Analogous to TotalDevi,n, all three components are relative terms, relative to the benchmark

CE (i.e. MLi,n). The dynamic of the total price deviation as discussed above is driven by the

dynamics of the three components combined. To understand the pricing dynamics better, for

each subject, we peel out each of the three components. The separation of the three components

from each other can be achieved directly using the data in Package 0 and Package 15.

3.2 Belief effect

In this chapter, we extract the belief effects directly using subjects’ responses in the guess

games, the first variable in Package 0 and Package 15: whitei,0 and white0,15. The belief effect

of subject i can be expressed by the difference between the benchmark belief (MLi,n) and i’s

personal belief (whitei,n):

BEi,n =
MLi,n − whitei,n

MLi,n
(5)

i = 1, 2 · · ·N ; n = 0, 15

where BEi,n denotes the belief effect of subject i after observing n draws, relative to the

benchmark. All guess game responses, whitei,n, are expressed by the proportion of the white

balls (in percent, inside interval [0, 1]). A positive BEi,n indicates that subject i prices the

asset lower than the benchmark belief implies, as she holds a more unfavorable belief than the

benchmark belief. A negative BEi,n indicates that subject i prices the asset higher than the

benchmark belief implies, as she holds a more favorable belief than the benchmark belief. It

is noteworthy that since guess games only elicit beliefs, the belief effects computed from guess

game responses are thus only belief-relevant and independent from attitudes.

The belief effect can be also understood as the difference between two CEs of the ambiguous

asset: the benchmark CE based on the all-neutral belief (MLi,n) and the subject i’s CE based

on the personal belief (whitei,n), assuming that i is risk- and ambiguity-neutral. Given that the

ambiguous lottery follows a binary Bernoulli distribution, a CE based on a specific conceived

winning probability is simply the conceived winning probability itself (i.e. CE is equal to the

belief in computation). From this point of view, it is also clear that belief effects are only

belief-relevant and independent from attitudes, since all attitudes are assumed to be neutral.

The results ofBEi,n are summarized in Table 3 Panel A. Figure 3 illustrates the distribution

of BEi,n for n = 0 and n = 15, respectively (the second box under each n value). On average,

the personal beliefs induce little effect on asst pricing both before any draw has occurred and

after 15 draws. This is supported by the fact that on average the belief effect is relative small:

before any draw has occurred, the average belief effect is 0.007 but insignificant; After 15

draws, it turns to be slightly negative, but nearly insignificant (mean=-0.083, P-value=0.086).
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Overall, the belief effect tends to be zero before and after 15 draws. On an individual level,

however, heterogeneity prevails. As can be seen Figure 3 (the second box under each n value),

before any draw has occurred, there are more subjects who display price discount due to the

personal beliefs (BEi,n > 0) than subjects who display price addition (BEi,n < 0). After 15

draws, the proportion of positive belief effects and the proportion of negative ones are nearly

the same. From an individual’s point of view, there seems to exist a tendency in terms of how

personal beliefs influence asst pricing: a subject is more likely to price the asset lower than the

benchmark belief implies, before any information is revealed, but more likely to price the asset

as the benchmark belief implies, after observing a certain amount of information. It also means

that a subject may bias towards the unfavorable situations in belief under completely ambiguity,

and may turn to evaluating the situations neutrally as more and more information is revealed.

The heterogeneity of the belief effect raises the necessity of considering the effect of belief in

settings involving strong ambiguity. Without such consideration, belief effects may confound

other components of the price deviation, and result in biased estimations of risk premium and

ambiguity premium.

A subject’s belief updating dynamic, in comparison with the benchmark belief updates

(ML), can be disentangled into two inducements: the stickiness to a subject’s previous belief,

and the pessimism/optimism factor. Hence, the belief effect can be further decomposed into

the effect of personal stickiness and the effect of pessimism/optimism. As an add-on to the

discussion of belief effects, we discuss this later.

3.3 Risk premium

Furthermore, we peel out the risk premium, i.e. the price deviation arising from a subject’s

non-neutral risk attitude. We use the first two variables in Package 0, whitei,0 and Xi,R0 , to

derive subject i’s risk premium when pricing the ambiguous asset before any draw has occurred.

Recall that the risky lottery in R0 has a winning probability equal to whitei,0 (i.e. subject i’s

reported personal belief). The difference between the expected value of the lottery in R0 (equal

to whitei,0) and i’s CE of the risky lottery (i.e. Xi,R0) captures the risk premium required by

i. The same logic applies to whitei,15 and Xi,R15 in Package 15 as well. Thus, we define:

RPi,n =
whitei,n −Xi,Rn

MLi,n
(6)

i = 1, 2 · · ·N ; n = 0, 15

where RPi,n denotes the risk premium required by subject i when pricing the ambiguous asset

after observing n draws. Again, RPi,n is a relative term, relative to the benchmark CE. All

reported Xi,An are standardized to [0, 1]. It noteworthy that the risk premium is solely risk

attitude relevant: since Xi,Rn induced by the wining probability exactly equal to whitei,n, the

subtraction partials out belief effects; In addition, since the constructed lottery is purely risky,

ambiguity attitude plays no role here.

A positive risk premium indicates risk aversion, a negative premium indicates risk loving,

and zero indicates risk neutrality. The higher the value is, the more risk averse is subject i. The
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results of RPi,n are summarized in Table 3 Panel A. Figure 3 illustrates the distribution of RPi,n

for n = 0 and n = 15, respectively (the third box under each n value). Overall, risk premium

tends to zero before and after 15 draws. This is supported by the fact that both mean values

are close to zero and insignificant. This result indicates that, on average subjects display risk

neutrality independent of draw implementation. On an individual level, however, there exists

rather large heterogeneity. As can be seen in Figure 3 (the third box under each n value), before

any draw has occurred, slightly more subjects tend to have a positive risk premium (indicating

risk aversion) than a negative risk premium (indicating risk loving). After 15 draws, there

are nearly as many subjects who have positive risk premiums (N=39) as subjects who have

negative risk premiums (N=41). Yet the heterogeneity intensifies.

3.4 Ambiguity premium

At last, we extract the ambiguity premium, i.e the price deviation arising from non-neutral

ambiguity attitude. We use the last two variables in Package 0, Xi,R0 and Xi,A0 , to derive

subject i’s ambiguity premium when pricing the ambiguous asset before any draw has occurred.

Recall that, from subject i’s point of view, the lottery in R0 and the lottery in A0 have the

same (given/conceived) winning probability, which is equal to whitei,0. The only difference

is that the winning probability of the lottery in R0 is given (purely risky), while the winning

probability of the lottery in A0 is conceived to be equal to whitei,0 from i’s point of view

(ambiguity exists). Therefore, the difference between Xi,R0 and Xi,A0 solely arises from i’s

attitude towards ambiguity, and can be defined as the ambiguity premium. The same logic

applies to R15 against A15 in Package 15. The ambiguity premium is thus defined as follow:

APi, n =
Xi,Rn −Xi,An

MLi,n
; (7)

i = 1, 2 · · ·N ; n = 0, 15

where APi,n denotes the ambiguity premium required by subject i when pricing the ambiguous

asset after observing n draws. Again, APi,n is a relative term, relative to the benchmark CE.

Since Xi,Rn and Xi,An are induced by the identical belief and the identical risk attitude, the

subtraction of the two variables partials out the price deviation ascribed to belief and risk

attitude. Therefore, the ambiguity premium is a clean measurement of the price deviation

arising from ambiguity attitude.

A positive ambiguity premium indicates ambiguity aversion, a negative premium indicates

ambiguity loving, and zero indicates ambiguity neutrality. The higher the value is, the more

ambiguity averse is subject i. The results are reported in Table 3 Panel A. Figure 3 illustrates

the distribution of APi,n for n = 0 and n = 15, respectively (the fourth box under each n value).

Overall, subjects have significantly positive ambiguity premiums before any draw has occurred

(mean=0.107, P-value=0.001), indicating strong ambiguity aversion. The ambiguity premium

decreases as draws are implemented. On average, the ambiguity premium decreases to zero

after 15 draws (mean=-0.040, P-value=0.385). Provided that ambiguity attitude is an inner

characteristic and is consistent over time for each subject, the provision of new information (i.e.

15 draws) tend to wash out the ambiguity premium: as more information is revealed, ambiguity
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gradually resolves. Subjects feel more confident about their beliefs on the urn composition, and

thus require less ambiguity premium for compensation. On an individual level, heterogeneity

again prevails (Figure 3). Most subjects have a positive ambiguity premium (indicating ambi-

guity aversion) in a completely ambiguous environment (n = 0). After 15 draw, the distribution

move downwards evidently. It seems that negative ambiguity premiums slightly outnumber the

positive ones, but the difference is small. The distribution compresses from n = 0 to n = 15,

indicating that heterogeneity decreases over time. This may also e explained by the resolution

of the ambiguity: when ambiguity gradually resolves, more and more subjects would require

smaller ambiguity premium than before. Thus, the distribution of the ambiguity premium

compresses towards zero.

It is also interesting to check the proportion of each component in the total price deviation.

Table 3 Panel A shows that, before any draw has occurred, on average the ambiguity premium

seems to account for the largest proportion (nearly 80%) among the three components, followed

by the risk premium (15%) and the belief effect (5%). In addition, the ambiguity premium is

the only significant effect among the three, and it alone contributes to the significance of

the total price deviation before any draw has occurred. Hence, it is rather conclusive that a

subject’s ambiguity attitude dominates her pricing strategy of a completely ambiguous asset.

After 15 draws, all three deviations decrease to negligible amount. From the dynamics of the

three components, it is rather clear that the pricing overall displays an increasing tendency, as

ambiguity gradually resolves.

In terms of heterogeneity, the belief effect and the ambiguity premium tend to display

decreasing heterogeneity as the number of draw increases, while the risk premium displays

increasing heterogeneity. It is understandable since the belief effect and the ambiguity premium

are closely affected by the draws. As ambiguity gradually resolves, more and more subjects

slide to the benchmark in belief and require less compensation for exposure to ambiguity. Thus,

both distributions have the tendency compressing towards zero. A subject’s risk attitude is, in

theory, independent from the draws, and thus the risk premium is not systematically affected

by the number of draws.

3.5 Inducements of the belief effects: optimism or stickiness?

As an add-on discussion of the belief effect, in this chapter we analyze the possible inducements

of the belief effects derived in Chapter 3.2. The belief effect is defined as the price deviation

arising from the difference between the all-neutral benchmark belief characterization and a

subject’s personal belief characterization. When a subject updates her current belief, two

factors may determine where the updated belief locates: the stickiness to her current belief,

and her pessimistic/optimistic inclination. The stickiness describes, standing at her current

belief (whitei,n−1), how a subject updates to her new belief (whitei,n) by reacting to the new

information (represented by the MLi,n updates). She can fully react to the new information

by perfectly following the MLi,n updates, i.e. whitei,n = MLi,n, she can also fully stick to her

current belief by ignoring the new information, i.e. whitei,n = whitei,n−1, or she can end up

somewhere in-between. A subject’s optimistic/pessimistic inclination can be represented by a
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further adjustment on belief after the reaction to the new information. A downward adjustment

(in the conceived number of white balls) is defined as pessimism, while an upward adjustment

is defined as optimism. These two factors: stickiness to current belief and pessimism/optimism,

determine a subject’s belief updating dynamic, and consequently induce the belief effects. The

belief updating dynamic of subject i can be written as follow:

whitei,n = [(1− ψsi ) · whitei,n−1 + ψsi ·MLi,n]ψ
p
i (8)

where whitei,n denotes subject i’s elicited belief (the conceived proportion of white balls in

the ambiguous urn) in the guess game Gn. whitei,n−1 is its lagged variable. MLi,n = ki,n/n

denotes the maximum likelihood update after n draws, where ki,n denotes the number of white

draws in the draw history observed by subject i. The parameter ψsi governs i’s response to

the new information represented by MLi,n. ψsi = 1 indicates that i fully responds to the

new information, while ψsi = 0 indicates that i fully sticks to her current belief, ignoring

the draw information. ψsi ∈ (0, 1) indicates that subject i partially responds to the draw

information, with some degree of stickiness to her current belief. The parameter ψpi captures

the further belief adjustment due to subject i’s pessimistic/optimistic inclination. In case

[(1−ψsi ) ·whitei,n−1 +ψsi ·MLi,n] ∈ (0, 1), ψpi > 1 implies pessimism (a downward adjustment),

ψpi < 1 implies optimism (an upward adjustment), and ψpi = 1 implies that neither pessimism

nor optimism exists (no further adjustment). Based on this belief updating model, for each

subject i, we estimate ψsi and ψpi . The regression equation reads:

whitei,n = [(1− ψsi ) · whitei,n−1 + ψsi ·MLi,n]exp(pi) + εi,n (9)

where ψpi ≡ exp(pi) (10)

n = 1, 2, · · · , 15; i indexes subject

where εi,n denotes the error term. whitei,n and whitei,n−1 are observable guess game responses,

and MLi,n are derived from the observed draw history. We first estimate ψsi and pi for each

subject, applying nonlinear regression. Subsequently, we recover ψ̂pi based on Equation (10).

Since the intention is to scrutinize the inducements of the belief effects after 15 draws (n = 15),

we only apply the above regression to subjects in Session II-VII (N=89). Subjects in Session I

(N=13) do not play the ambiguity choice list after 15 draws (A15), hence they are excluded from

the estimation. Moreover, the belief effects before any draw has occurred should be induced

solely by pessimism/optimism, since at the very beginning there is no current belief to stick to

(i.e. whitei,−1 is not defined). Therefore, BEi,0 is not to be discussed.

The parameter ψ̂pi reflects to what degree i’s belief effect after 15 draws (BEi,15) is induced

by her pessimistic/optimistic inclination, while ψ̂si reflects to what degree is induced by her

stickiness to her current belief. Table 3 Panel C reports the results. On average, ψ̂pi is close

to one (mean=0.984, N=89). For 81 subjects (91% of the 89 subjects), ψpi is not significantly

different from one (significance level=5%). This result implies that pessimism/optimism overall

is hardly the main inducement of the belief effect at n = 15 (i.e. BEi,15, mean=-0.083, P-

value=0.086). On the contrary, ψ̂si is on average evidently less than one (mean=0.357, N=89).

For 79 subjects (nearly 89% of the 89 subjects), ψsi is significantly different from one (significance
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level=5%). This implies that the stickiness to current beliefs play an important role in shaping

the belief effects after 15 draws. Therefore, it is rather safe to conclude that the belief effects

observed after 15 draws are mainly induced by subjects’ stickiness to their current beliefs. The

personal pessimism/optimism is negligible in belief effects, both before any draw has occurred

and after all draws have occurred.

3.6 Main results of the non-parametric analysis

In this non-parametric analysis, we analyze the total price deviation and its three components

of each subject when pricing the ambiguous asset at two specific points in time respectively:

before any draw has occurred and after 15 draws. Due to the “parallel” design within the three

games in Package 0/Package 15, the experiment data directly leads to clean measurements of

the belief effects, the risk premiums and the ambiguity premiums. Unlike previous literature,

the clean separation between beliefs and attitudes lead to a more accurate measurements of

all three price deviation components. The measurements of the three components reach the

following main findings: (1) before any draw has occurred (n = 0), price deviations (more

specifically, price discounts) are observed, as previous literature also finds. On average, the

ambiguity premiums are significantly positive (indicating ambiguity aversion overall), and are

larger than the belief effects and the risk premiums. The belief effects are negligible: neither

pessimism nor optimism is observed in subjects’ initial beliefs. (2) After 15 draws are observed,

subjects on average raise the price of the ambiguous asset (price discounts shrink). The positive

ambiguity premiums vanish. The belief effects, however, show up. This tends to be mainly

driven by subjects’ stickiness to their old beliefs (under-reaction to the new information) in

belief updating, not due to pessimism or optimism. (3) Heterogeneity is observed in the total

price deviation and in each of its three components. The heterogeneity in ambiguity premium

decreases apparently as the number of draws increase to 15.

4 Price deviations: parametric analysis

In the previous chapter, we extract the total price deviation and its three components for

each subject when she prices the ambiguous asset after a given number of draws. Thanks to

the experiment design, the deviation variables can be directly derived from the experiment

data without any model specification. This technique facilitates a clean measurement for each

variable. In this chapter, we apply another method based on model specification and parameter

estimation, i.e. a parametric analysis. This method also leads to a clean separation of belief

effects from attitude effects on asset pricing. First, we model a subject’s belief updating strategy

following Li and Wilde (2020). We estimate the parameters governing belief formation and belief

updating using the guess game responses, and accordingly recover the personal belief dynamic

of each subject. Second, we adopt the KMM model to reconstruct a subject’s pricing strategy.

We consider two different specifications of the utility functions, and based on each specification

we estimate the parameters governing a subject’s risk attitude and ambiguity attitude using the

data from the risk/ambiguity choice list. Finally, with the recovered personal belief dynamics,
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and the estimated attitude parameters, we compute, for each subject, her (estimated) belief

effect, risk premium, and ambiguity premium at the two points in time, respectively: before any

draw has occurred (n = 0) and after 15 draws (n = 15). The KMM model clearly separates the

beliefs from the attitudes in the preliminaries, hence the application of this model provides a

clean separation between the effects ascribed to beliefs and the effects ascribed to risk/ambiguity

attitudes on ambiguous asset pricing. Compared with the non-parametric analysis (the analysis

directly works on the experiment data), this parametric analysis uses more data (in total 15

guess game responses) to recover the belief characterizations. It may recover a more stable

belief dynamic, and helps to increase the accuracy especially in presence of subjective errors

in guess game entries. In addition, the parametric analysis does not rely on some specific

experiment design, as opposed to the non-parametric analysis, which relies on the “parallel”

games. Therefore, it is more generalized and can be easily applied to other empirical settings

involving ambiguity.

4.1 Belief estimation

To model a subject’s asset pricing strategy, first of all, we need to recover a subject’s belief

dynamics along the draws. We borrow the idea of the two-order probability from the KMM

model to explicitly describe a subject’s belief: the proportion of white balls in the ambiguous

urn (in percent), denoted as θ, can take 101 scenarios: θ = 0, 0.01, · · · , 1. Hence, (θ, 1 −
θ) constitutes the first-order probability. The likelihood that some θ is the true parameter

constitutes the second-order probability. A subject’s belief is defined as her conceived second-

order probability. Specifically, subject i’s belief after observing n draws describes how she

assigns the likelihood measurement to each scenario, after observing n draws. Let Prob(θ|i, n)

denote i’s belief after observing n draws. As an example, Prob(0.2|i, 10) = 0.4 means that from

subject i’s point of view, the probability that the ambiguous lottery has 20 white balls (i.e. the

proportion of white balls is equal to 0.2) is equal to 0.4. The belief estimation is to estimate

the entire second-order probability of each subject, after a certain number of draws, and for

each scenario, i.e. Prob(θ|i, n) for each subject, each θ = 0, 0.01 · · · 1, and n = 0, 158.

We apply the belief estimation method in Li and Wilde (2020) to estimate the parameters

which govern a subject’s initial prior and updating rule. A brief introduction of this method is

presented below.

The belief formation and updating of subject i is modeled as follows: subject i starts with

an initial prior which can be characterized by a beta distribution with shape parameter bundle

8Since the main interest of this paper is the price deviation at n = 0 and at n = 15, we restrict our attention

to these two specific points in time. The beliefs after other number of draws (e.g. n = 1, 2 · · · 14) are estimable

based on this model as well, but not the interest of this paper, and thus we suppress the discussion about them.
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(αi,0, βi,0). She updates her belief by applying the following rule:

αi,n = αi,0 + γwi · ki,n (11)

βi,n = βi,0 + γbi · (n− ki,n) (12)

ki,0 = 0 (13)

all α, β terms ≥ 1; γwi , γ
b
i ≥ 0; n = 1, 2 · · ·T ; i ∈ {1, 2, · · ·N}

where (αi,n, βi,n) characterizes the (updated) belief distribution of subject i, after she observes

n draws. ki,n denotes the number of white draws out of n draws, observed by subject i. When

no draws are observed, naturally ki,0 = 0. T denotes the maximum number of draws. The

updating rule expressed by Equation (11) means that after observing n draws, i updates her

α parameter by adding the number of the observed white draws (ki,n), after multiplying a

subjective multiplier (γwi ), to her initial prior parameter (αi,0). γwi = 1 indicates that she

perfectly employs Bayes’ rule in updating beliefs when observing a white draw. 0 < γwi < 1

indicates under-reaction according to Bayes’ rule when observing a white draw, while γwi > 1

indicates over-reaction. γwi = 0 indicates no updating when observing a white draw. The same

logic is applicable to the updating rule expressed by Equation (12) with respect to the black

draws. An updated belief is still characterized by a beta distribution, with updated shape

parameter bundles (αi,n, βi,n). For a beta-distribution, its shape is completely governed by the

bundle (α, β). This paper only considers the cases with α, β ≥ 1, so that the beta-distributions

are unimodal, except for the case α = β = 1 (i.e. uniform distribution)9.

To recover subject i’s entire belief distributions after each draw, it is sufficient to estimate

the parameter set {αi,0, βi,0, γwi , γbi } of subject i. Li and Wilde (2020) derive the estimation

equation:

whitei,n
100

= Mi,n

[
1−Mi,n

1− whitei,n/100

]βi,0+γbi (n−ki,n)−1

αi,0+γ
w
i
ki,n−1

+ εi,n (14)

where Mi,n ≡
αi,0 + γwi ki,n − 1

αi,0 + γwi ki,n + βi,0 + γbi (n− ki,n)− 2
(15)

and εi,n denotes the error term. To restrict αi,0, βi,0 ≥ 1 and γwi , γ
b
i ≥ 0, the exponential function

is applied:

αi,0 = 1 + exp(ai) (16)

βi,0 = 1 + exp(bi) (17)

γwi = exp(rwi ) (18)

γbi = exp(rbi ) (19)

9In case of α = β = 1, the beta-distribution becomes a uniform distribution. In case of α = 1, β > 1, the

distribution has a decreasing PDF representation (mode= 0),. In case of α > 1, β = 1, the distribution has an

increasing PDF representation (mode= 1). In case of α > β > 1, the distribution is bell-shaped and left-skewed

(mode> 0.5). In case of β > α > 1, the distribution is bell-shaped and right-skewed (mode< 0.5). Whenever

α = β, the distribution is symmetric around 0.5. In case of α = β > 1, the mode is equal to 0.5. The larger the

parameters are, the more squeezed is the distribution.
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We plug Equation (16)-(19) into Equation (14)(15), and estimate {ai, bi, rwi , rbi} for each

subject i, conducting nonlinear regressions based on Equation (14). Then, we recover α̂i,0, β̂i,0,

γ̂wi and γ̂bi based on Equation (16)-(19), respectively. The R2 is, on average, equal to 0.982

(max=.999, min=.695, s.d.=0.053, N=98)10.

With the parameter estimations, we compute α̂i,n and β̂i,n for each subject at n = 0 and

n = 15 based on Equation (11) and (12). The estimated belief distributions can be expressed

by the probability mass function (PMF) of the 101 scenarios. With α̂i,0 and β̂i,0 (α̂i,15 and

β̂i,15), the PMF values of the belief distribution at n = 0 (at n = 15) can be computed as

follows (for readability, we write α̂i,n as α, and β̂i,n as β):

Prob(α, β, θ) =


cdf(α, β, 0.005); if x = 0 (20)

cdf(α, β, x+ 0.005)− cdf(α, β, x− 0.005); if x ∈ {0.01, 0.02 · · · 0.99} (21)

1− cdf(α, β, 0.995); if x = 1 (22)

1/101; for all θ if α = β = 1 (23)

where cdf(α, β, x) denotes the CDF value of the beta distribution with shape parameters

(α, β) evaluated at x. With the estimated belief parameters and the PMF computations, we

finally recover the entire initial (updated) belief distributions of each subject at n = 0 (at

n = 15). Figure 4a and 4b illustrate the belief distributions of each subject at n = 0 and

at n = 15, respectively. For better visualization, subjects are grouped by draw history: the

subjects who observe the same draw history are reported in the same sub-graph. The same

draw history induces the same benchmark beliefs (the same MLi,15; MLi,0 = 0.5 for every i).

In each sub-graph, the benchmark belief is added as reference.

Figure 4a shows that, for most subjects, the estimated initial beliefs are rather flat: sub-

jects assign probabilities relatively evenly to each possible scenario. Overall, it seems that no

dominating proportion of probabilities are assigned to either bad scenarios (in which winning

probability is less than 0.5) or good scenarios (in which winning probability is greater than

0.5 ). On average, the estimated beliefs tend to induce a similar expected value of the lottery

as the benchmark belief does, which is equal to 0.5. This result seems to be robust with the

finding in belief effects that BEi,0 is on average close to zero.

In Figure 4b, relatively more squeezed estimated beliefs can be observed. This may be due

to the fact that learning evolves and thus subjects become more confident about the winning

probability of the ambiguous lottery. For most estimated beliefs, the peaks are very close to

the benchmark beliefs, similar to Figure 4a. However, we also observe more subjects whose

estimated beliefs drastically deviate from the benchmark beliefs. For example in Subgraph 3,

6, 7, at least four subjects have a belief which is much larger than the benchmark belief MLi,15.

This may help explain why the mean of belief effects after 15 draws (BEi,15) is slightly negative:

some personal beliefs bias towards favorable situations in comparison with the benchmark belief,

which drives down the average belief effect. Except for these extreme values, the updated beliefs

10Three subjects never update their beliefs. They can be estimated by α̂i,0 = +∞, β̂i,0 =∞, and γ̂wi = γ̂bi = 0

such that (α̂i,0 − 1)/(α̂i,0 + β̂i,0 − 2) = whitei,0. One subject has extremely large values of estimations:

α̂i,0 = exp (541) and β̂i,0 = exp (539). These four subjects are excluded from the computation of R2.
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induce similar prices of the asset as the all-neutral benchmark, hence BEi,15 on average is not

far away from zero.

4.2 Attitude estimation

In this chapter, we adopt the KMM model to parameterize the risk attitude and the ambiguity

attitude. Using the experiment data from the risk/ambiguity choice lists and the estimated

belief characterizations, we estimate these two attitude parameters for each subject.

Following the KMM model, the subjective utility of the ambiguous asset can be written

as follow:

Eµ φ[Eπ u(c)] (24)

For simplicity, we suppress the subject subscript i and the choice list subscript (An, R) tem-

porarily. The inner part, Eπ u(c), denotes a vNM expected utility of a given risky scenario

(one of the 101 scenarios). The risky scenario has binary outcomes, white draw or black draw.

Each outcome is associated with a financial payoff c and the probability measurement of this

binary event is capture by π, i.e. the first-order distribution. Eµφ(·) denotes the vNM expected

utility across all 101 scenarios. µ denotes the realization likelihood of each scenario, i.e. the

second-order distribution (the belief), whose support is π. The subjective CE of an ambiguous

lottery (i.e. the X -value elicited from an ambiguity choice list, denoted as X below) can be

written as:

X = u−1(φ−1(Eµ φ[Eπ u(c)])) (25)

For a risk choice list, this equation degenerates to

X = u−1(Eπ u(c)) (26)

Specifying u as well as φ, and using a subject’s responses in the choice lists (X) as well as

her belief characterizations (µ), we can estimate, for each subject, the parameter governing her

risk attitude (ρ) and the parameter governing her ambiguity attitude (δ). First, we specify the

utility function u which governs the risk attitude as follow:

u(c) =1 + c1−ρ; ρ < 1 (27)

where c takes values in the interval [0, 1]11. We choose this specific first-order utility functional

form since it has the following good properties: (1) The value of ρ ∈ (−∞, 1) is monotone in

risk attitude. It covers all possible risk attitude levels, from infinite risk-seeking (in case of

ρ→∞) to infinite risk-aversion (in case of ρ→ 1), with ρ = 0 representing risk neutrality. (2)

u(c) exhibits constant relative risk aversion (CRRA): −c · u′′(c)/u′(c) = ρ. As an extension,

ρ < 0 represents a constant relative risk seeking. This supports our assumption that attitude

is consistent across time for a given subject. This also implies that risk aversion is independent

11The asset payout scheme is to be standardized such that in case a white draw is observed, the payoff is one,

and in case of a black draw, zero. Subjects’ responses in all choice lists are to be re-scaled to [0, 1].
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of wealth effect, i.e. ρ is not a function of c. The CRRA utility form is used in some previous

literature adopting the KMM model. This makes our paper comparable with others. (3) u(c)

is standardized such that u(0) = 1 and u(1) = 2, independent of ρ. It is a necessary condition

for the second order utility φ to have a functional representation (see Theorem 1 in Klibanoff

et al. 2005). Such standardization guarantees that risk attitude only affects ambiguity premium

through dispersion effect, rather than leverage effect (Izhakian and Benninga 2011). This is

also a reason why we do not consider a risk utility in form of constant absolute risk aversion

(CARA, a power functional form). To our knowledge, CARA does not satisfy this condition.

(4) u(c), as can be easily shown for all values of ρ < 1, c > 0, is increasing in c and continuously

twice-differentiable with respect to c. (5) u has a positive co-domain given c ≥ 0, satisfying the

domain condition of φ.

The utility function which governs the ambiguity attitude, φ : R+ → R, maps the (non-

negative) expected utility value of a risky scenario into a utility measure, taking the presence

of ambiguity into account. Its curvature governs the attitude towards ambiguity, with a more

concave function standing for a higher degree of ambiguity aversion. We consider two specifica-

tions of φ: one takes the form of constant relative ambiguity aversion (CRAA), the other takes

the form of constant absolute ambiguity aversion (CAAA). The choice of CRAA and CAAA

covers the mainstream utility functional forms widely used in current literature. Together with

the CRRA-form u in Equation (27), we consider Specification 1 and 2 described as follows:

Specification 1: CRRA and CRAA. In this specification, the utility function φ takes

the following form:

φ(y) =


y1−δ − 1

1− δ
; if δ 6= 1 (28)

log(y); if δ = 1 (29)

φ exhibits constant relative ambiguity attitude (CRAA), governed by the parameter δ: −φ′′(y)
φ′(y)
·

y = δ. δ > 0 indicates ambiguity aversion, δ = 0 indicates ambiguity neutral, and δ < 0

indicates ambiguity seeking. In addition, φ is increasing in y for any positive value of y (y ≥ 1

is guaranteed by the co-domain of u), and continuously twice-differentiable with respect to y.

Moreover, φ(y) expressed by Equation (28) converges to log(y) in case that δ → 1. It implies

that the representation in Equation (28) seamlessly overlaps that in Equation (29).

Using the specified utilities in Equation (27) and Equation (28)/(29) to rewrite Equation

(25) yields:

Xi,An =




[

1∑
θ=0

pmf(α̂i,n, β̂i,n, θ) · (1 + θ)1−δi

] 1
1−δi

− 1


1

1−ρi

; if δi 6= 1 (30)

[
exp

(
1∑
θ=0

pmf(α̂i,n, β̂i,n, θ) · log(1 + θ)

)
− 1

] 1
1−ρi

; if δi = 1 (31)

where An covers all ambiguity choice lists played by subject i12. As for the risk choice lists,

12n = 0 for Session I; n = 0, 15 for Session II, III and VI; n = 0, 1 · · · 15 for Session IV, V and VII. Details

22

Electronic copy available at: https://ssrn.com/abstract=3801713



in which Option B is some specific risky lottery, Xi,j (i.e. i’s response in the risk choice list

j) records i’s CE of the risky lottery with a known winning probability, denoted as πi,j. The

winning probability πi,j of some risky lottery can be interpreted as a specific case under the two-

order probability system: all second-order probabilities are assigned to the scenario θ = πi,j:

pmf(θ = πi,j) = 1 and pmf(θ 6= πi,j) = 0. Plugging them into Equation (30) or (31), the

equation degenerates to:

Xi,j = π
1

1−ρi
i,j (32)

where j covers all risk choice lists played by subject i.13 Therefore, we can integrate all choice

lists, both risk and ambiguity ones, into one regression equation expressed by Equation (30)

or (31), with Equation (32) being a special case. It is also to say, for each subject i, we

can estimate her ambiguity attitude (δi) and her risk attitude (ρi) simultaneously, applying

nonlinear regression based on Equation (30) or (31) (after adding an error term to the equation),

using all her responses in the choice lists. Finally, the estimated parameters (ρ̂i and δ̂i) are

obtained from the estimation (based on Equation 30 or Equation 31) which achieves the better

goodness of fit (i.e. the higher R2). Two subjects have no estimation results: for these two

subjects, Xi,j =constant for all j. No variance is found in the data and thus the estimation is

not applicable. For the rest 100 subjects, the estimation tends to fit the data very well: the R2

is on average 0.94

Table 4 Specification 1a summarizes the results of ρ̂i across subjects. On sample-population

level, subjects on average tend to display risk neutrality. Although the mean value of ρ̂i

across 100 subjects is slightly negative (mean=−0.522), it is not significantly different from

zero. In addition, for nearly 65% of the subjects, the null hypothesis indicating risk neutrality

(H0 : ρi = 0) cannot be rejected at 5% (not shown in the table). Moreover, there are nearly as

many risk averse subjects (N = 49) as risk loving subjects (N = 50). Overall, subjects tend to

display risk neutrality. This finding seems to be robust to the risk premiums found in Chapter

3.3: risk premiums are on average close to zero, indicating risk neutrality. On an individual

level, there exists heterogeneity in terms of risk attitude. This is justified by the large standard

deviations of ρ̂i.

As for the ambiguity attitude, Table 4 Specification 1a summarizes the results of δ̂i across

subjects. On a sample-population level, subjects on average display ambiguity aversion. The

mean value of δ̂i across the 100 subjects is over 50 and significantly differently from zero. This

implies strong ambiguity aversion. In addition, the subjects with positive δ̂i values (N = 67)

clearly outnumber the subjects with negative ones (N = 29). This evidence leads to apparent

overall ambiguity aversion in our sample. On an individual level, there exists heterogeneity

in ambiguity attitude across subjects. This can be seen from the large standard deviations of

δ̂i in each domain (except for δ̂i = 0). Yet, the ambiguity averse subjects obviously dominate

in proportion. These results are robust to the findings of APi,0 in Chapter 3.4: ambiguity

premiums are strongly positive, indicating ambiguity aversion. The close-to-zero average APi,15

can be found in Table 2 Column (7).
13Details can be found in Table 2 Column (6).
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in Chapter 3.4 also does not contradict with the parameter estimation result: after 15 draws,

the resolution of ambiguity may explain the reduction of ambiguity premium.

The estimation of attitude parameters above uses the estimated beliefs as input: pmf(α̂i,n, β̂i,n, θ)

are the estimated beliefs in form of probability masses. The heterogeneous estimated beliefs,

which precisely capture each subject’s real belief dynamic, seem to lead to a more accurate

estimation of the attitude parameters in comparison with the case in which the heterogeneity

in personal belief is ignored. To see this point more clearly, we construct an all-neutral belief

dynamic for each subject i: she starts with a uniformly distributed initial belief, and updates

the beliefs by perfectly employing Bayes’ rule in response to the draw information that she

observes. Based on the belief estimation model, this belief dynamic of subject i can be recov-

ered by αi,0 = βi,0 = γwi = γbi = 1, together with ki,n which represents the (subject-specific)

draw history. Subsequently, we re-estimate both attitude parameters based on Equation (30)

and (31), pretending that the all-neutral belief dynamic is i’s true belief. The results of ρ̂i

and δ̂i based on the all-neutral belief dynamics are reported in Table 4 Specification 1b. The

mean value of ρ̂i assuming all-neutral beliefs is −0.365, different from the mean value of ρ̂i

using estimated beliefs (-0.522). Such different is, however, not drastically large. The mean

value of the difference, reported in the “1a minus 1b” column, is rather small (-0.157) and

insignificant. These results seem to indicate that if the heterogeneous personal beliefs are not

correctly characterized, the estimation of the risk attitude may result in slightly biased result.

As for the ambiguity attitude, the δ̂i estimated based on the constructed all-neutral beliefs

tend to be lower than the δ̂i estimated based on the estimated personal beliefs (“the correct

beliefs”). The mean value of δ̂i in Specification 1b is much lower than that in Specification 1a,

and it is not significantly different from zero as well. In addition, for 62 subjects, their δ̂i values

tend to be underestimated under the all-neutral beliefs, much more than the subjects whose δ̂i

tend to be overestimated under the all-neutral beliefs (N=33). As can be seen in column “1a

minus 1b”, the mean value of the different between δ̂i using estimated beliefs and δ̂i assuming

all-neutral beliefs is as large as 38.507. Moreover, Figure 5a illustrates the magnitudes of the

under- and over-estimations. It shows that underestimations, which are represented on the

right side of the graph, tend to be more severe than the over-estimations on the left side. All

in all, these results seem to imply that if the heterogeneous personal beliefs are not correctly

characterized, the estimation of the ambiguity attitude would probably be downwards biased:

the real magnitude of the ambiguity aversion would be underestimated under the mistakenly

characterized beliefs in our sample.

Some previous literature which adopts the KMM model for asset pricing analysis also

estimates the parameters governing risk attitude and ambiguity attitude. Since different speci-

fications of the utility functions in the KMM model can lead to different interpretations of the

attitude parameters, the absolute values of the estimated parameters are in general not com-

parable across literature. Hence, we focus on the signs of the estimated parameters which are

comparable in most cases: a positive parameter indicates risk/ambiguity aversion, a negative

parameter indicates risk/ambiguity loving, and zero indicates risk/ambiguity neutrality.

Among the previous literature, one typical work is Krahnen et al. (2014). In one of the spec-

ifications, the authors specify both utility functions with power functional forms (CRRA+CRAA),
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comparable to our Specification 1. The authors find that the estimated risk parameter has a

zero median, indicating risk neutrality overall. The estimated ambiguity parameter has a posi-

tive median, indicating ambiguity aversion overall. These findings are similar to ours. However,

our estimations seem to be more accurate and reliable, since Krahnen et al. (2014) do not ex-

plicitly specify the beliefs, which may lead to (probably downwards) biased results under the

incorrect belief characterizations as discussed above.

Specification 2: CRRA and CAAA. In this specification, the utility function φ takes

the following form:

φ(y) =


−e−δy

δ
; if δ 6= 0 (33)

y; if δ = 0 (34)

where φ exhibits constant absolute ambiguity attitude (CAAA): −φ′′(y)
φ′(y)

= δ, where δ > 0

indicates ambiguity aversion, δ = 0 indicates ambiguity neutral, and δ < 0 indicates ambiguity

seeking. In addition, φ is increasing in y for any value of y, and continuously twice-differentiable

with respect to y.

Analogously, re-writing the expression of the subjective CE of an ambiguity choice list

(Equation 25) with the specified utilities in Equation (27) and (33)/(34) yields:

Xi,An =



−log
[∑1

θ=0 pmf(α̂i,n, β̂i,n, θ) · exp(−δi(1 + θ))
]

δi
− 1


1

1−ρi

; if δi 6= 0 (35)

[
1∑
θ=0

pmf(α̂i,n, β̂i,n, θ) · (1 + θ)− 1

] 1
1−ρi

; if δi = 0 (36)

The corresponding degenerated form for the risk choice lists is identical to Equation (32), which

is a special case of Equation (35) and (36). For each subject i, we estimate her ambiguity

attitude (δi) and her risk attitude (ρi) simultaneously, applying nonlinear regression based on

Equation (35) or (36) (after adding an error term to the equation), using all her responses in

the choice lists. Finally, the estimated parameters, ρ̂i and δ̂i, are obtained from one of the

two estimations (one based on Equation 30, and one based on Equation 31) which achieves the

better goodness of fit (i.e. the higher R2). In fact, only two subjects turn out to be better

estimated by δ̂i = 0 in terms of goodness of fit, for whom the estimation results are thus

obtained from Equation (36). Two subjects have no estimation results at all, since no variation

is found in the data of each. For the remaining 98 subjects, their estimated parameters are

obtained from the regression based on Equation (35). Overall, the estimation tends to fit the

data very well: the R2 is on average 0.94.

Table 4 Specification 2a report the results of ρ̂i and δ̂i based on Specification 2. In the

regressions, the estimated personal beliefs are used as input. The results show that on average

ρ̂i is slightly negative but insignificantly different from zero. Subjects with positive ρ̂i values

are nearly as many as subjects with negative ones. Overall, ρ̂i tends to be zero, indicating risk
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neutrality. This is robust to the findings under Specification 1a. This implies that the transition

of φ function from a power utility (CRAA) to an exponential utility (CAAA) hardly affects the

estimation of the risk attitude parameter. This is understandable, since the specification of u,

which governs the risk attitude, is identical in Specification 1a and 2a. The transition of φ affects

the estimation of the ambiguity attitude parameter more evidently. The mean value of δ̂i is

equal to 10.552, slightly significant. In comparison with the significantly positive mean value in

Specification 1a, δ̂is in 2a display overall milder ambiguity aversion. However, heterogeneity still

sustains. The proportion of the ambiguity averse subjects (δ̂i > 0, N=67) and the proportion of

the ambiguity loving subjects (δ̂i < 0, N=31) are quite robust to Specification 1a. This implies

that, in comparison with the estimated δ̂i under the power utility function (CRAA), the results

under the exponential utility function (CAAA) seems to be more concentrated around zero.

However, the sign of each δ̂i, which reflects whether a subject is ambiguity averse or ambiguity

loving, is consistent. In other words, when considering which specification is to adopted for

analyses, whether choosing CRAA or CAAA probably does not affect the investigation for

whether a subject is ambiguity averse or ambiguity loving, but may affect the magnitude of the

ambiguity aversion or ambiguity loving.

Analogously, to see more clearly the importance of using the “correct” personal belief

characterizations in attitude estimation, we re-run the regressions using the constructed all-

neutral belief dynamics. The results are reported in Table 4 Specification 2b. In rows related

to risk attitude, ρ̂i has a mean value equal to −0.388 in 2b, different from the mean value

−0.520 in 2a. Yet, such difference is small and insignificant (see“2a minus 2b” column). As

for ambiguity attitude, the δ̂i tends to be slightly underestimated in Specification 2b compared

with in 2a. In 2b, the mean value of δ̂i is positive but insignificant. This result is not too

much different from that in 2a, where δ̂i is positive and only significant at 10%. Figure 5b

illustrates the transition of δ̂is from 2b to 2a. It seems that most δ̂is take similar values under

the two different belief characterizations. The magnitude of the overestimations (left half of

the graph) and the magnitude of the underestimations (right half of the graph) tend to be

smaller, in comparison with the transition from 1b to 1a (in Figure 5a). This implies that the

accuracy of the ambiguity attitude estimation under CAAA (Specification 2) is less sensitive to

the correctness of the belief characterizations in comparison with the estimation under CRAA

(Specification 1).

Some previous literature which applies the KMM model assumes similar utility specifica-

tions as we do in Specification 2. A closely related work is Cubitt et al. (2018). The authors

specify the risk utility function u with a power form (CRRA) and the ambiguity utility function

φ with an exponential form (CAAA). Moreover, the authors also parameterize and estimate

personal beliefs, which makes their paper even more comparable to our Specification 2. The

authors find that overall the subjects are risk averse: the median of the risk attitude coefficient

is positive, and obviously more subjects can be categorized as risk averse than as risk loving

based on the risk attitude coefficient. As for the ambiguity attitude coefficient, the authors also

find ambiguity aversion: the median of the ambiguity attitude coefficient is significantly posi-

tive. We reach the similar results in terms of ambiguity attitude, but different results in term

of risk attitude. This may be explained by the different specific forms of the utility functions
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that two papers adopt. Specifically, Cubitt et al. (2018) adopt a risk utility function which

tends to violate the requirement of the KMM model (see Theorem 1 in Klibanoff et al. (2005)

and Izhakian and Benninga (2011)). Our paper fixes this problem. Moreover, Cubitt et al.

(2018) estimate beliefs simultaneously with attitude parameters, and thus the belief estimation

may be confounded by the attitude estimation. In contrast, we estimate beliefs independently

from attitudes, which tends to provide more accurate results. At last, in Cubitt et al. (2018)

the second-order probability has a binary support, while in our model there are 101 supports.

The generality of our setting is also an improvement compared with Cubitt et al. (2018).

With the results from both Specification 1 and 2, we can reach the following conclusions:

the attitude parameter estimations using the recovered personal beliefs tend to be robust un-

der Specification 1 (CRRA+CRAA) and Specification 2 (CRRA+CAAA): Both specifications

fit the data very well (high R2 in both specifications). On average, the parameter governing

a subject’s risk attitude (ρi) tends to be zero, indicating risk neutrality; the parameter gov-

erning a subject’s ambiguity attitude (δi) tends to be positive, indicating ambiguity aversion.

Heterogeneity prevails in both parameters and in both specifications. If beliefs are mistak-

enly characterized, in general δi is likely to be underestimated (downwards biased) under both

Specification 1 and 2, especially under Specification 1. For individual subjects, the biases are

heterogeneous: both underestimated and overestimated δis are prevalent across subjects under

both specifications. These results consolidate the necessity of the correct recovery of the per-

sonal beliefs, prior to the analysis of attitude estimation. With mistakenly characterized beliefs,

the estimations of attitude parameters are very likely to be biased for individual subjects, no

matter which mainstream utility functions are used.

4.3 Estimation of price deviations

In the previous chapters, we estimate the parameters governing a subject’s belief formation

and updating (α̂i,0, β̂i,0, γ̂wi and γ̂bi ). Using the recovered belief dynamics as inputs, we further

estimate the risk attitude (ρ̂i) and the ambiguity attitude (δ̂i) under two different specifications

of utility functions. In this chapter, we use the belief estimation results and the attitude

estimation results under Specification 1 (1a in Table 4) to derive the estimated total price

deviation and its three components (i.e. belief effect, risk premium, and ambiguity premium)

for each subject when she prices the ambiguous asset as defined in this paper. The estimations

at two specific points in time are our interest: before any draw has occurred (n = 0), and after

15 draws have occurred (n = 15). The nice feature of the KMM model that beliefs and attitudes

are separable by construction facilitates a clean measurement of the three components of the

total price deviation. This also enables a comparison between the estimated price deviations

based on the parametric analysis (in this chapter) and the price deviations based on the non-

parametric analysis (in Chapter 3).

Analogously, we first define an all-neutral benchmark-CE, which is induced by neutral

beliefs, neutral risk attitude, and neutral ambiguity attitude. The neutral benchmark beliefs

are characterized by a uniformly distributed initial prior and the perfect employment of Bayes’

rule in belief updating. This means that the benchmark belief is parameterized by αi,0 = βi,0 =
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γwi = γbi = 1, where subscript i indicates that this benchmark belief dynamic is generated based

on the draw history observed by subject i. The benchmark-CE is equal to the mean of the

benchmark belief. This is due to the fact that the first-order probability follows a Bernoulli

distribution, hence the mean of the second-order probability (the mean of the benchmark

belief distribution) is equal to the expected value of the ambiguous asset (the benchmark CE),

provided that risk attitude and ambiguity attitude are both neutral. Thus, we can write:

CEneutral
i,n =

ki,n + 1

n+ 2
(37)

Estimated total price deviation. Analogous to Equation (3), we define the total price

deviation as the difference between the benchmark CE and the estimated conceived CE of a

subject.

TotalDevesti,n =
CEneutral

i,n − CEest
i,n

CEneutral
i,n

(38)

where CEest
i,n =


[

1∑
θ=0

pmf(α̂i,n, β̂i,n, θ) · (1 + θ)1−δ̂i

] 1

1−δ̂i

− 1


1

1−ρ̂i

(39)

θ = 0, 0.01, · · · 1; i = 1, 2 · · ·N ; n = 0, 15

Equation (39) estimates the conceived CE of subject i following Equation (30). The estimated

total price deviation is also defined as a relative term, relative to the benchmark CE. The results

of TotalDevesti,n are reported in Table 5 Panel C. The results are robust in comparison with

TotalDevi,n in Table 3 Panel A: Overall, the estimated total price deviation is strongly positive

before any draw has occurred, and turn to be negative after 15 draws are implemented. This

indicates the average price increases as information accumulates and ambiguity resolves. On an

individual level, Figure 6 plots the distribution of TotalDevesti,n across subjects, by the number

of draws (n = 0 and n = 15). Similar to TotalDevi,n in Figure 3, there exists heterogeneity. In

addition, the distribution also shifts down slightly as the number of draws increases to 15.

Since a subject’s total price deviation can be decomposed into three components, we can

write:

TotalDevesti,n = BEest
i,n +RP est

i,n + AP est
i,n (40)

This is analogous to Equation (4). BEest
i,n , RP est

i,n , and AP est
i,n denote the estimated belief effect,

estimated risk premium, and the estimated ambiguity premium of subject i after observing

n draws, respectively. To distinguish the variables in this chapter from those in Chapter 3,

the superscripts “est” (meaning “estimated”) are added. To proceed, we compute the three

components one after another.

Estimated belief effect. Analogous to Equation (5), the estimated belief effects can be

derived as follow:

BEest
i,n =

[
CEneutral

i,n − α̂i,n

α̂i,n + β̂i,n

]/
CEneutral

i,n (41)

i = 1, 2 · · ·N ; n = 0, 15
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where α̂i,n and β̂i,n, governing the personal belief, can be recovered from Equation (11) and (12)

using the estimated belief parameters and draw history, respectively. The term α̂i,n/(α̂i,n+ β̂i,n)

represents the mean value of the estimated personal belief. This is also equal to the conceived

CE of subject i given her estimated belief, assuming risk neutrality and ambiguity neutrality.

Therefore, BEest
i,n is purely belief relevant, independent from attitudes. This can also be justi-

fied by the fact that the attitude parameters, ρ̂i and δ̂i, do not enter the belief effect formula.

Analogous to BEi,n, BEest
i,n also provides a clean measurement of the effects ascribed to the

personal beliefs, without confounding from attitudes. The results are reported in Table 5 Panel

C. On average, the estimated belief effect tends to be close to zero at n = 0 (mean=-0.041,

median=0.000), and turns to be negative at n = 15 (mean=-0.206, median=-0.065). This is

similar to the tendency of BEi,n in Table 3 Panel A. In addition, the negative estimated belief

effects after 15 draws may be explained by subjects’ stickiness to their current beliefs, rather

than their optimism in beliefs. This is supported by the fact that 79 out of 102 subjects are

estimated by γ̂wi < 1 and γ̂bi < 1, which indicates stickiness to current beliefs in belief updat-

ing. Figure 6 illustrates the distributions of BEest
i,n at n = 0 and n = 15, respectively. Again,

heterogeneity prevails. However, BEest
i,0 seems to be more compressed than BEi,0 in Figure 3.

This may be partly explained by the application of the estimated beliefs: the belief estimation

model “smooth” the belief dynamic of each subject. The fitted values derived from the regres-

sion model (i.e. the estimated beliefs) are thus less heterogeneous.

Estimated risk premium. Analogous to Equation (6), the estimated risk premium can

be derived as follow:

RP est
i,n =

 α̂i,n

α̂i,n + β̂i,n
−

(
α̂i,n

α̂i,n + β̂i,n

) 1
1−ρ̂i

/CEneutral
i,n (42)

i = 1, 2 · · ·N ; n = 0, 15

The term α̂i,n/(α̂i,n + β̂i,n) follows the explaination above. The term [α̂i,n/(α̂i,n + β̂i,n)]1/(1−ρ̂i)

can be interpreted as subject i’s conceived CE under her personal belief and modified by her

estimated risk attitude (ρ̂i), assuming ambiguity neutral (δ̂i = 0). Therefore, the difference

between the two terms is solely ascribed to her risk attitude ρ̂i. It is easy to check that ρ̂i = 0

leads to RP est
i,n = 0. Both terms inside the big bracket are computed based on the personal be-

liefs. Thus, the subtraction partials out the effect of the personal beliefs, leaving RP est
i,n a clean

measurement of effects ascribed to a subject’s risk attitude. The results of RP est
i,n are reported

in Table 5 Panel C. Overall, the estimated risk premium tends to be close to zero at n = 0 and

n = 15. This is consistent with findings of RPi,n in Table 3 Panel A. The distributions of RP est
i,n

are illustrated in Figure 6, for n = 0 and n = 15, respectively. The heterogeneity is prevalent

at both points in time, similar to the results from Figure 3.

Estimated ambiguity premium. At last, analogous to Equation (7), the estimated
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ambiguity premium can be derived as follow:

AP est
i,n =

( α̂i,n

α̂i,n + β̂i,n

) 1
1−ρ̂i

− CEest
i,n

/CEneutral
i,n (43)

i = 1, 2 · · ·N ; n = 0, 15

where CEest
i,n , derived in Equation (39), denotes subject i’s conceived CE under her personal

belief, modified by her risk attitude (ρ̂i) and her ambiguity attitude (δ̂i). As explained above,

the first term on the RHS can be interpreted as i’s conceived CE under her personal belief,

modified by her risk attitude (ρ̂i) but assuming ambiguity neutrality (δ̂i = 0). Therefore, AP est
i,n

is solely ascribed to her (non-neutral) ambiguity attitude δ̂i. It is easy to show that δ̂i = 0

leads to AP est
i,n = 0. In addition, both terms inside the big bracket are computed based on the

personal beliefs. Thus, the subtraction partials out the effect of the personal beliefs, leaving

AP est
i,n a clean measurement of effects ascribed to a subject’s ambiguity attitude.

The results of AP est
i,n are reported in Table 5 Panel C. Before any draw has occurred, the

estimated ambiguity premium is on average strongly positive (mean=0.148, median=0,085).

After 15 draws, the average ambiguity premium decreases (mean=0.118, median=0.052). This

is consistent with the intuition: as ambiguity gradually resolves, subjects tend to require less

compensation for the exposure to ambiguity, which drags down the ambiguity premiums. Such

trend is robust to the findings of APi,n in Table 3 Panel A. However, after 15 draws, AP est
i,15 is

still strongly positive, while APi,15 tends to be zero. This may be explained by characterizations

of the estimated beliefs after 15 draws. As Figure 4b implies, most subjects hold the beliefs

which still reflect some degree of ambiguity, i.e. the belief curves are still rather flat after 15

draws, and ambiguity is still conceived to be strong. Therefore, we observe positive ambiguity

premium based on this belief estimation at 15 draws. It seems that conceived ambiguity degree

decreases more quickly in the observed beliefs (directly from the experiment data) than in the

estimated beliefs (the fitted values). Therefore, APi,n decreases more rapidly than AP est
i,n as the

number of draws increases to 15.

In addition, Figure 6 illustrates the distributions of AP est
i,n at n = 0 and n = 15, respectively.

Heterogeneity prevails at both points in time, but decreases over time. This is robust to the

findings of APi,n in Figure 3.

As for the proportion of each components in the total price deviation, before any draw

has occurred, ambiguity premium tend to play a dominating role among the three. After 15

draws have been implemented, the belief effect tend to override the dominating position of

the ambiguity premium. Risk premium is small at both points in time. In general, the price

deviations derived from the estimated belief and attitude parameters tend to be robust to the

price deviations directly derived from the experiment data.

5 Conclusion

This paper uses laboratory experiments to study how the presence of ambiguity affects subjects’

pricing strategies. In particular, we investigate for each individual subject how her valuation of
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a lottery with unknown winning probability deviates from an all-neutral benchmark valuation.

As in previous empirical literature which studies price deviations under ambiguity, we also

observe a price discount in the presence of ambiguity. Our paper builds on these results and

moves forward: unlike previous studies, our experiment design allows us to cleanly disentangle

the total price deviation into three separable components: belief effect, risk premium, and

ambiguity premium. This separation allows us to further investigate to what extent the price

deviation is ascribed to beliefs, and to what extent it is ascribed to ambiguity attitude.

The results show that in case of a high degree of ambiguity, on average the ambiguity

premium accounts for the biggest proportion of the price deviation. Overall, subjects display

substantial aversion against ambiguity. On the other hand, the belief effect plays a smaller role.

There exists neither substantial pessimism nor substantial optimism in beliefs. As information

accumulates, i.e. the degree of ambiguity decreases, the ambiguity premium decreases, and

belief effects emerge. The emerging belief effects are mainly driven by the under-adjustment in

belief updating (in comparison with Bayes’ rule), and not by pessimism or optimism in subjects’

beliefs. In other words, in a dynamic setting, beliefs tend to affect pricing through subjects’

sticky belief updating rules, and not through subjects’ biased views regarding possible scenarios

per se. Therefore, both factors, belief and attitude towards ambiguity, are important factors in

pricing under ambiguity.

In addition, for each subject, we estimate the parameter governing risk aversion (ρ) and

the parameter governing ambiguity aversion (δ) under the KMM model. The KMM model

realizes the parametric separation of belief, risk attitude, and ambiguity attitude. Together

with our experiment design, we are able to cleanly estimate the two attitude parameters,

with belief effects completely partialled out. The parameter estimations show that on average

subjects display slight risk loving and strong ambiguity aversion, i.e. the mean of ρ̂ is slightly

negative, and the mean of δ̂ is significantly positive (ρ̂ = −0.5 and δ̂ = 52.3 in a CRRA+CRAA

specification; ρ̂ = −0.5 and δ̂ = 10.6 in a CRRA+CAAA specification).

The investigation of belief effects also implies that in case that beliefs are not correctly

characterized, the results of ambiguity aversion are probably biased. This is shown in the pa-

rameter estimation: the estimated ambiguity aversion (δ) under the neutral benchmark beliefs

is different from the estimated ambiguity aversion under the recovered beliefs, especially on the

level of individual subjects. This confirms the necessity of separating beliefs and attitudes in

settings involving ambiguity.
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Table 1: Experiment procedure

This table reports the main procedure of a complete experiment session. Some games may show up only in

some sessions, instead of all sessions, but the time-line applies to all sessions. n denotes the number of draws

already implemented. “R” denotes risk choice list, in which Option B is some purely risky lottery. “A” denotes

ambiguity choice lists, in which Option B is the ambiguous lottery (operationalized by the ambiguous urn). In

risk/ambiguity choice lists, a subject reports her conceived reservation value (certainty equivalent) of the lottery

in Option B. “G” denotes guess game, in which subjects guess the number of white balls in the ambiguous urn.

n=0 → n=1 → · · · n=14 → n=15

R50, R25, R75

↓
G0 G1 · · · G14 G15

↓ ↓ ↓ ↓
A0 A1 · · · A14 A15

↓ ↓ ↓ ↓
Asset Trading Asset Trading · · · Asset Trading R0, R14, R15, Rml, Rbay

↓ ↓ ↓ ↓

1st draw 2nd draw · · · 15th draw

Selected choice lists are

played for real;

Questionnaire; Final

payment.

Notations

Choice list: lottery in Option B

Type of

lottery/urn
No. of white balls (W)

No. of

black balls
Total Description

R50 risky 50 50 100

R25 risky 25 75 100

R75 risky 75 25 100

R0 risky subject’s response in G0 100-W 100

R14 risky subject’s response in G14 100-W 100

R15 risky subject’s response in G15 100-W 100

Rml risky ML update∗ 100-W 100

Rbay risky Bayesian update$ 100-W 100

An ambiguous unknown unknown 100 played after n draw(s)

Guess game: the urn

Gn ambiguous unknown unknown 100 played after n draw(s)

∗Suppose that a subject observes in total T draws, with k units of them being white draws, her ML update (maximum

likelihood update) is equal to 100k/T .

$Assume that a subject starts with a uniformly distributed initial belief, and updates it in response to the draw information

by employing Bayes’ rule. The Bayesian update here refers to the mean value of a subject’s updated belief distribution

after she observes all draws.
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Table 2: No. of subjects per Session/Market

This table summarizes the information of subjects participating in each experiment session, reported in Column (1)-(4). Column (5)-(7) report the included guess

games, risk choice lists, and ambiguity choice lists in each session, respectively. Column (6)/(7) also reports the number of risk/ambiguity choice lists played for real

(i.e. the earnings from these choice lists enter a subject’s final payment) in brackets “[ ]”. Column (8) reports the draw history path generated in each session. Column

(9) reports whether the asset trading is included in each session.

Session

ID

Market

ID

Subject

ID

No. of

subjects
Guess games

Risk choice lists

[No. of played for real]

Ambiguity choice lists

[No. of played for real]
Draw history*

Asset

trading

(1) (2) (3) (4) (5) (6) (7) (8) (9)

I 1 1-13 13 G0, G1 · · ·G14 R50, R0, R14, Rml [4] A0 [1] Path 1 Yes

II 2 14-20 7
G0, G1 · · ·G15 R50, R0, R15, Rml, Rbay [5] A0, A15 [2]

Path 2
Yes3 21-27 7 Path 3

III 4 28-34 7
G0, G1 · · ·G15 R50, R0, R15, Rml, Rbay [5] A0, A15 [2]

Path 4
Yes5 35-41 7 Path 5

IV 6 42-48 7
G0, G1 · · ·G15 R50, R25, R75, R0, R15 [5] A0, A2 · · ·A15 [5]

Path 6
Yes7 49-55 7 Path 7

V 8 56-62 7
G0, G1 · · ·G15 R50, R25, R75, R0, R15 [5] A0, A2 · · ·A15 [5]

Path 8
Yes9 63-69 7 Path 9

VI 10 70-76 7
G0, G1 · · ·G15 R50, R25, R75, R0, R15 [5] A0, A15 [2]

Path 10
Yes11 77-83 7 Path 11

VII - 84-102 19 G0, G1 · · ·G15 R50, R25, R75, R0, R15 [3] A0, A2 · · ·A15 [6] Path 12-30 No

Total=102
Total=30 draw

history paths

For markets 1-11, each market observes one independent draw history, i.e. subjects in the same market observe the same draws. In Session

VII, each subject observes one independent draw history.
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Table 3: Belief effect, risk premium and ambiguity premium

Panel A summarizes the results of the total price deviation, the belief effect, the risk premium, and the ambiguity

premium when a subject prices the ambiguous asset, respectively. For subject i, the total price deviation

(TotalDevi,n) computes the price deviation in comparison with an all-neutral benchmark, when she prices the

ambiguous asset in the ambiguity choice list An (n = 0, 15). It is computed based on Equation (3). The total

price deviation is then decomposed into three components: the belief effect (deviation ascribed to personal

beliefs, denoted as BeliefDevi,n), the risk premium (deviation arising from non-neutral risk attitude, denoted

as RiskDevi,n), and the ambiguity premium (deviation arising from non-neutral ambiguity attitude, denoted

as AmbDevi,n). They are computed based on Equation (5)-(7), respectively. The statistical summaries of the

four variables are reported in Panel A, by the number of draws. Panel B reports the number of subjects by

the range of each variable reported in Panel A. Panel C reports the results of ψ̂p
i and ψ̂s

i . Belief effects can be

induced by a subject’s pessimism/optimism and/or the stickiness to her current belief (lack of responding to new

draw information). These two inducements of the belief effects, parameterized by ψp
i and ψs

i respectively, are

estimated based on Equation (9). ψp
i = 1 indicates neither pessimism nor optimism is found in belief updating;

ψp
i > 1(< 1) indicates pessimism (optimism). ψs

i = 1 indicates no stickiness to current beliefs (fully responding

to new information as ML updates); ψs
i < 1 indicates stickiness to current beliefs (lack of updating); ψs

i > 1

indicates overly responding to new information.

Panel A: Total price deviation and its three components

n=0 (before any draw has occurred) n=15 (after 15 draws)

mean sd. median N mean sd. median N

TotalDevi,n 0.134*** 0.389 0.040 102 -0.152** 0.566 -0.027 89

BEi,n 0.007 0.222 0.000 102 -0.083* 0.454 0.000 89

RPi,n 0.020 0.313 0.000 102 -0.029 0.447 0.000 89

APi,n 0.107*** 0.323 0.003 102 -0.040 0.429 0.000 89

Panel B: No. of subjects by the range of price deviation

n=0 (before any draw has occurred) n=15 (after 15 draws)

TotalDevi,0 BEi,0 RPi,0 APi,0 TotalDevi,15 BEi,15 RPi,15 APi,15

variable< 0 32 26 42 26 51 32 41 40

variable= 0 13 42 18 25 8 28 9 25

variable> 0 57 34 42 51 30 29 39 24

Total (N) 102 102 102 102 89 89 89 89

Panel C: Belief effect after 15 draws (BEi,15): optimism or stickiness

No. of subjects, for whom

mean s.d N H0 : ψpi = 1 can be rejected at 5%

ψ̂pi : optimism 0.984 0.165 89 8

No. of subjects, for whom

mean s.d N H0 : ψsi = 1 can be rejected at 5%

ψ̂si : stickiness to current

beliefs
0.357*** 0.261 89 79

In Panel A and C, the significance tests in the “mean” columns refer to the two-sided t-tests

with the null hypothesis that the mean value is equal to zero. ∗p < 0.1; ∗∗p < 0.05; ∗∗∗p < 0.01.
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Table 4: Estimation of attitude parameters: under different utilities and beliefs

This table reports the estimated risk attitude parameter (ρ̂i) and the ambiguity attitude parameter (δ̂i) under different utility specifications and different belief

characterizations. In Specification 1 (CRRA+CRAA), The utility function governing the risk attitude/ambiguity attitude is specified in Equation (27)/(30)-(31). In

Specification 2 (CRRA+CAAA), the utility function governing the risk attitude/ambiguity attitude is specified in Equation (27)/(35)-(36). In each Specification, for

each subject, the estimation is conducted under two different beliefs, respectively: either using the estimated personal beliefs (indexed by “a”) or assuming the all-neutral

beliefs (indexed by “b”). The differences of the estimated values of a parameter, induced by assuming/using different beliefs, is summarized in column “1a minus 1b”

for Specification 1 and in column “2a minus 2b” for Specification 2. All results related to ρ̂i (δ̂i) are reported in the upper (lower) part of the table.

Specification 1a Specification 1b 1a minus 1b§ Specification 2a Specification 2b 2a minus 2b§

CRRA: u(c) = 1 + c1−ρ CRRA: u(c) = 1 + c1−ρ CRRA: u(c) = 1 + c1−ρ CRRA: u(c) = 1 + c1−ρ

CRAA: φ(y) = y1−δ−1
1−δ CRAA: φ(y) = y1−δ−1

1−δ CAAA: φ(y) = −e−δy
δ

CAAA: φ(y) = −e−δy
δ

Estimated beliefs All-neutral beliefs Estimated beliefs All-neutral beliefs

ρ̂i mean s.d N mean s.d N mean N mean s.d N mean s.d N mean N

All -0.522 3.258 100 -0.365** 1.449 100 -0.157 100 -0.520 3.258 100 -0.388*** 1.453 100 -0.132 100

> 0 0.176 0.141 49 0.145 0.123 52 0.261 53 0.173 0.141 50 0.146 0.124 50 0.253 56

= 0 0.000 0.000 1 0.000 0.000 0 0.000 8 0.000 0.000 1 0.000 0.000 0 0.000 6

< 0 -1.217 4.521 50 -0.918 1.950 48 -0.758 39 -1.237 4.565 49 -0.922 1.915 50 -0.719 38

δ̂i mean s.d N mean s.d N mean N mean s.d N mean s.d N mean N

All 52.255** 255.591 100 13.748 205.439 100 38.507* 100 10.552* 54.603 100 9.105 67.718 100 1.446 100

> 0 81.792 308.226 67 38.312 214.973 67 70.854 62 19.574 62.656 67 20.396 68.213 67 12.890 55

= 0 0.000 0.000 4 0.000 0.000 0 0.000 2 0.000 0.000 2 0.000 0.000 0 0.000 2

< 0 -8.778 26.554 29 -36.125 177.280 33 -15.061 36 -8.267 25.435 31 -13.819 61.493 33 -13.124 43

CRRA stands for constant relative risk aversion; CRAA stands for constant relative ambiguity aversion; CAAA stands for constant absolute ambiguity aversion. §1a minus 1b refers to the

parameter estimated based on specification 1a minus the same parameter estimated based on Specification 1b. Analogous for “2a minus 2b”. The significance tests are only conducted for

the mean values of the full sample (the “All” rows): two-sided t-tests with a null hypothesis that the mean value is equal to zero. *** p < 0.01; ** p < 0.05 *p < 0.1.
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Table 5: Estimated total price deviation and its three components: under Specification 1

The table reports the estimation results of the total price deviation and its three components. All four variables

are estimations based on the estimated beliefs and estimated attitude parameters under Specification 1 of utility

functions. For subject i, the estimated total price deviation (TotalDevesti,n ) computes the price deviation in

comparison with an all-neutral benchmark, when subject i prices the ambiguous asset in the ambiguity choice

list An (n = 0, 15). TotalDevesti,n is computed based on Equation (38). The estimated total price deviation

is then decomposed into three components: the belief effect (deviation ascribed to personal beliefs, denoted

as BEest
i,n ), the risk premium (deviation arising from non-neutral risk attitude , denoted as RP est

i,n ), and the

ambiguity premium (deviation arising from non-neutral ambiguity attitude, AP est
i,n ). They are computed based

on Equation (41), (42) and (43), respectively.

n=0 (before any draw has occurred) n=15 (after 15 draws)

mean sd. median N mean sd. median N

TotalDevesti,n 0.087** 0.353 0.035 100 -0.116** 0.525 -0.014 88

BEest
i,n -0.041* 0.208 0.000 102 -0.206*** 0.445 -0.065 89

RP est
i,n -0.019 0.242 0.000 100 -0.026 0.342 0.000 88

AP est
i,n 0.148*** 0.246 0.085 100 0.118*** 0.206 0.052 88

The significance tests refer to two-sided t-tests with a null hypothesis that the mean value is equal to zero. ***

p < 0.01; ** p < 0.05 *p < 0.1.
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Figure 1: Screen display of guess game

This figure displays the screen-shot of the guess game, in which a subject guesses the number of white balls

in the ambiguous urn. Gn denotes the guess game played after n draws are implemented (0 ≤ n ≤ T , where

T = 14 in Session I, otherwise T = 15). The guess games are played in the following sequence. Guess games

are played in line with draws from the ambiguous urn with replacement. The previous draw history, if any, is

displayed on the screen for subjects’ reference. As an example, the screenshot of the guess game after five draws

(G5) is displayed.
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Figure 2: Screen display of choice list

This graph displays the screen-shot of a choice list. As an example, Graph (a) presents risk choice list R50:

Choose between some sure payment (one of the 1500 versions of Option A) and a 50-50 risky lottery (Option

B). Graph (b) presents ambiguity choice list A5: Choose between some sure payment (one of the 1500 versions

of Option A) and an ambiguous lottery (Option B), after observing five draws from the ambiguous urn (with

replacement). In each choice list, a subject reports a so-called X-value to generate 1500 decisions: whenever

the sure payment amount in Option A is smaller than this X-value, she prefers playing the lottery in Option B;

whenever the sure payment amount in Option A is equal or larger than this X-value, she prefers accepting the

sure payment directly.

(a) Risk choice list R50

(b) Ambiguity choice list A5
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Figure 3: Price deviation and its three components

This diagram illustrates the distributions of the total price deviation, the belief effect, the risk premium, and

the ambiguity premium, respectively. For subject i, the total price deviation (TotalDevi,n) computes the price

deviation in comparison with an all-neutral benchmark, when she prices the ambiguous asset in the ambiguity

choice list An (n = 0, 15). It is computed based on Equation (3). The total price deviation is then decomposed

into three components: the belief effect (deviation ascribed to personal beliefs, denoted as BEi,n), the risk

premium (deviation arising from non-neutral risk attitude , denoted as RPi,n), and the ambiguity premium

(deviation arising from non-neutral ambiguity attitude, APi,n). They are computed based on Equation (5)-(7),

respectively. The distribution of each variable (across subjects) is plotted for n = 0 (before any draw has

occurred) and n = 15 (after 15 draws), respectively. Outsiders are not shown in the graph.
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Figure 4: Estimated belief dynamics

This diagram illustrates the belief updating dynamic recovered from estimated parameters α̂i, β̂i, γ̂
w
i and γ̂bi of

each subject. Only the belief distributions before any draw has occurred (n = 0) and after 15 draws (n = 15) are

illustrated. For better visibility, squeezed distributions with maximum PMF> 0.1 are represented by vertical

lines (resting on the support where the maximum PMF is achieved). Subjects are grouped according to the

observed draw history (Sub-graphs 1-30 represent 30 different draw history paths): subjects who observe the

same draw history are reported in the same sub-graph and are compared with the same benchmark beliefs. The

benchmark beliefs of each draw history are added as reference lines (The vertical red lines represent MLi,0 = 0.5

and MLi,15 for each specific draw history.)
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(b) After 15 draws (n = 15)
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Figure 5: Ambiguity attitude parameter (δi): estimations under different utilities and beliefs

This diagram illustrates the estimated ambiguity attitude parameter δ̂i under different utility specifications and

different belief characterizations. Figure (a) illustrates δ̂is estimated based on Specification 1 (CRRA+CRAA).

The utility function governing the risk attitude is specified in Equation (27); The utility function governing the

ambiguity attitude is specified in Equation (30)-(31). Figure (b) illustrates δ̂is estimated based on Specification

2 (CRRA+CAAA). The utility function governing the risk attitude is specified in Equation (27); The utility

function governing the ambiguity attitude is specified in Equation (35)-(36). In each Specification, for each

subject, a pair of δ̂is is estimated under two different beliefs, respectively: either assuming the all-neutral beliefs

or using the estimated personal beliefs. For each subject, the two δ̂is are illustrated on a vertical line. The

difference of the two δ̂is is visualized by an arrow pointing from the δ̂i assuming all-neutral beliefs to the δ̂i

using estimated personal beliefs. The illustrations are sorted (on the X-axis) by this difference. The vertical

gray dash line indicates where such difference is zero. The green (red) arrows represent the cases in which the

δ̂i using the estimated personal beliefs is smaller (larger) than the δ̂i assuming all-neutral beliefs. For visibility,

only δ̂i ∈ [−50, 50] are included.

(a) Specification 1: CRRA and CRAA (N=89)
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(b) Specification 2: CRRA and CAAA (N=91)
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Figure 6: Price deviation and its three components

This diagram illustrates the distributions of the estimated total price deviation, belief effect, risk premium,

and ambiguity premium, respectively. All four variables are estimations based on the estimated belief and the

estimated attitude parameters. For subject i, the estimated total price deviation (TotalDevesti,n ) computes the

price deviation in comparison with an all-neutral benchmark, when subject i prices the ambiguous asset in the

ambiguity choice list An (n = 0, 15). TotalDevesti,n is computed based on Equation (38). The estimated total

price deviation is then decomposed into three components: the belief effect (deviation ascribed to personal

beliefs, denoted as BEest
i,n ), the risk premium (deviation arising from non-neutral risk attitude , denoted as

RP est
i,n ), and the ambiguity premium (deviation arising from non-neutral ambiguity attitude, AP est

i,n ). They are

computed based on Equation (41), (42) and (43), respectively. The distribution of each variable (across subjects)

is plotted for n = 0 (before any draw has occurred) and n = 15 (after 15 draws), respectively. Outsiders are

not shown in the graph.
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