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Using a novel theoretical framework and data from a comprehensive field study we conducted over a period

of three years, we outline the causal effects of algorithmic discrimination on economic efficiency and social

welfare in a strategic setting under uncertainty. We combine economic, game-theoretic, and applied machine

learning concepts allowing us to overcome the central challenge of missing counterfactuals, which generally

impedes showcasing economic downstream consequences of algorithmic discrimination. Using our framework

and unique data, we provide both theoretical and empirical evidence on the consequences of algorithmic

discrimination. Our unique empirical setting allows us to precisely quantify efficiency and welfare ramifi-

cations relative to an ideal world where there are no information asymmetries. Our results emphasize that

Artificial Intelligence systems’ capabilities in overcoming information asymmetries and thereby enhancing

welfare negatively depend on the degree of inherent algorithmic discrimination against specific groups in

the population. This relation is particularly concerning in selective-labels environments where outcomes are

only observed if decision-makers take a particular action so that the data is selectively labeled. The reason

is that commonly used technical performance metrics like the precision measure can be highly deceptive and

lead to wrong conclusions. Finally, our results depict that continued learning, by creating feedback loops,

can help remedy algorithmic discrimination and associated negative effects over time.
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1. Introduction

The field of Artificial Intelligence (AI), especially in the area of machine learning (ML), has seen

dramatic progress in the last decade (LeCun et al. 2015). Today, the use of AI systems to augment

human decision-making, or even replace the human decision-maker at all, has become an integral

part of daily work. At its core, the majority of current systems comprises ML algorithms that

revolve around learning representations. This is done by deriving flexible mathematical functions

from training data that comprises examples of input-output pairs. In that sense, ML methods can

be interpreted as a very powerful tool for data-driven model selection (Domingos 2012). Thereby

models can be used to generate accurate predictions about a variable of interest (label) using avail-

able data (features) not included in the training data (Mullainathan and Spiess 2017). Generated

predictions can then be used to inform decision-making under uncertainty and environments of

asymmetric information (Agrawal et al. 2019).

Against the background that their predictions are faster, cheaper, (most of the time) more

reliable and scalable than human ones, AI technologies have found their way into businesses in

virtually all areas of industry (McAfee et al. 2012). In the financial sector, where credit card fraud

is a profound problem creating substantial economic harm (Nilson 2016), credit card providers use

ML models to predict the legitimacy of a transaction using its characteristics and data of previous

transactions. Based on the prediction, an information system subsequently permits or rejects the

transaction (e.g. Bhattacharyya et al. 2011, Adewumi and Akinyelu 2017).

Relatedly, there is increasing use of ML algorithms in the banking sector, where AI systems

enable the accurate detection and management of risks (Leo et al. 2019). On an individual level,

for instance, ML algorithms make use of historic customer data to predict applicants’ risk of credit

default, classify them as good or bad, and ultimately decide about granting a credit (Wang et al.

2015).

AI applications also frequently augment or automate hiring and promotion decisions in orga-

nizations by identifying individuals who are most capable of filling specific vacancies (Hoffman

et al. 2018). In this context, algorithms use available data, such as people’s personal information,

to produce predictions about their future performance and job fit, for both, new applicants or

current employees. By informing central HR decisions with accurate individual-level predictions,

AI systems promise increases in organizations’ labor productivity as candidates are more likely to

be matched with suitable jobs.

Other examples of AI systems augmenting or automating human decision making include algo-

rithmic trading (Hendershott et al. 2011, Chaboud et al. 2014), predictive policing (Ensign et al.

2017), bail decisions (Kleinberg et al. 2018a), medical diagnosis (Esteva et al. 2019), and even
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online dating (Hitsch et al. 2010). Taken together these examples illustrate the broad adoption of

and reliance on algorithmic decision making in business practice.

While all these instances foreshadow that AI systems may substantially enhance economic effi-

ciency and social welfare, there is also the risk that algorithmic decision making may unintentionally

and unexpectedly shape societal outcomes for the worse (for a comprehensive discussion see Rah-

wan et al. 2019). There is a growing stream of evidence indicating how the broad use of algorithms

can impose less favorable treatment to already disadvantaged groups creating societal tensions

and potential welfare losses, a phenomenon frequently referred to as algorithmic discrimination

(Sweeney 2013, Ensign et al. 2017, Obermeyer et al. 2019, Lambrecht and Tucker 2019). When

deciding upon the deployment of AI systems to augment or automate human decisions, we need

to consider the entire range of complex consequences, both positive and negative ones and balance

them. It is therefore crucial to further our understanding of how the use of AI systems, especially

discriminatory ones, may scale into population-wide consequences.

With the paper at hand, we intend to contribute to this necessity by studying the economic ram-

ifications of algorithmic discrimination. Similar to related studies, we broadly consider algorithmic

discrimination as the algorithmic production of outputs that are inaccurate for a specific group of

individuals thereby leading to unfair and disadvantageous economic (and social) outcomes for these

individuals, as compared to individuals not belonging to this group (see for example Adomavicius

and Yang 2019). We intend to outline and precisely quantify how algorithmic discrimination in

a strategic setting under asymmetric information can create considerable efficiency and welfare

losses. To this end, we pursue a strategy combining economic, game-theoretic, and applied machine

learning paradigms. This allows us to produce both complementary theoretical and empirical evi-

dence on the matter at hand. Specifically, we first examine the relation between economic outcomes

and algorithmic discrimination by deriving a novel game-theoretic framework capturing the funda-

mental informational and incentive structure of a wide range of sequential economic transactions.

Subsequently, we put the fundamental model implications to an empirical test using a unique and

considerably rich data set that we collected over a period of three years in a large field study.

The central challenge when it comes to an empirical evaluation of economic ramifications of

employing discriminatory AI systems lies mainly in assessing whether the AI system’s actual deci-

sions are better than the alternative, i.e., choices the system does not make. Put differently, there

is a lack of counterfactual observations in real-world field settings. As a consequence, it is almost

impossible to assess the welfare ramifications of employing discriminatory AI systems. For instance,

if a discriminatory system chose not to hire an applicant while a non-discriminatory system would

have done so, it is not possible to measure which decision would have been better simply because

there is no data on the applicant’s performance had he been hired.
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In the empirical part of our paper, we overcome the problem of missing counterfactuals by

making use of data that we collected in a controlled and incentivized field study that we conducted

over three years. Participants in the field study engaged in an incentivized sequential prisoners’

dilemma, i.e., we paid them according to their actions to elicit their revealed preferences, from

which we use a specific subset of participants. The basic structure of the game we use in the paper

at hand is as follows. There are two players - a trustor and a trustee. Both are initially endowed

with 10 monetary units. First, the trustor decides whether or not to transfer his endowment to the

trustee. If the trustor decides not to transfer his endowment, the game ends and both the trustor

and trustee earn 10 monetary units. If the trustor, however, decides to make a transfer, the trustee

learns about the trustor’s choice and subsequently decides about a transfer of her initial endowment

as well. In case of a transfer from one player to another, the monetary units sent from one player

to the other are doubled. While abstract, this setting mirrors the incentive and informational

structure of any one-shot sequential economic exchange that takes place in the absence of perfect

enforcement mechanisms. Specifically, (i) there is an information asymmetry between first and

second moving parties, and (ii) there is a conflict between individual and collective interests to

engage in, or reciprocate, a transfer. With this structure, the game that we study reflects, for

instance, anonymous financial market transactions (Fehr et al. 1993, Brown et al. 2004) and one-

shot principal-agent exchanges (Fehr et al. 1997). We elicited field study participants’ behavior

using the strategy method, i.e., in the role of the trustee, participants make decisions conditional

on the decisions of the trustor. Hence, the strategy method gives us the unique opportunity to

observe the consequences of counterfactual choices that real people in the role of the truster did

not make. Participants in our study also answered a broad set of survey items on demographics,

socio-economic background, cognitive abilities, and personality traits.

Using the data from our field study, we build an AI system that makes initial trustor decisions

on behalf of human stakeholders who, instead of playing as the trustor themselves, delegate the

decision authority to the machine. The AI system comprises two central components. First, a

ML algorithm trained to predict a trustee’s likelihood to reciprocate a transfer of endowment by

transferring the personal endowment as well. Second, an algorithm that uses the prediction in

combination with the human stakeholder’s estimated preferences to make the utility-maximizing

trustor decision. We then conduct comprehensive simulations where the AI system, in the role of

the trustor, repeatedly plays on behalf of field study participants against other participants from

the field study. Both the AI system’s human stakeholders and trustees stem from a population

of field study participants that we do not use to build the AI system, i.e., a real out-of-sample

population. To determine game outcomes, we match the AI system’s decisions with these trustees’

actual choices from the field study. Put differently, we use real-life, consequential choices actual
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people previously made and not simulated, artificial decisions. Hence, our results depict the social

welfare and economic efficiency that the out-of-sample population of field study participants would

reach if they were to interact with the AI system. We quantify the level of economic efficiency and

social welfare relative to the first-best scenario where there is no uncertainty and human trustors

perfectly anticipate responses of trustees if they initially transfer their endowment, i.e., where there

is no need to produce and harness ML based predictions. This is only possible since we observe

counterfactual trustee decisions.

We start estimating efficiency and welfare consequences if the AI system’s ML component does

not unfairly produce inaccurate predictions for any specific group of individuals. Subsequently, we

show how these results change when the ML algorithm makes inaccurately low predictions about

women’s likelihood to reciprocate a transfer (while the predictions for men are accurate) so that

initial transfers occur significantly less often when the system plays against women compared to

men. We induce discriminatory outputs by using non-representative, imbalanced training data, a

problem that is highly relevant in practice. Finally, inspired by notions from papers that study

ML in non-stationary environments (Elwell and Polikar 2011), we examine whether continued

learning - the ongoing updating of ML models using newly collected training examples - can help

to counteract originally learned discrimination over time.

There are three main insights from our study. First, in line with a theoretical framework we

derive, we produce causal empirical evidence that AI systems’ capabilities to enable economic effi-

ciency and social welfare (on both an individual and a population-wide level) critically depends

on the absence of inherent algorithmic discrimination against specific subgroups. The more an AI

system discriminates, the more it fosters the occurrence of inefficient outcomes and reduces welfare

on both the individual and the social level. The size of negative ramifications increases with the

level of discrimination. Notably, even the group against which the AI system does not discrimi-

nate is better off if the predictive ML component does not discriminate. Second, we depict that

in settings prone to selective labels issues (Lakkaraju et al. 2017), the observed algorithmically

shaped outcomes only allow to construct poor, misleading technical performance measures for the

employment of the machines. Independent of algorithmic discrimination and welfare consequences,

the selectively observed outcomes suggest that all AI systems perform equally well concerning

technical performance metrics. This is the case even though strongly discriminating systems create

considerable welfare losses that we can only observe in our study because we have access to coun-

terfactuals which are usually not accessible in business practice and most real-life settings. These

insights suggest that algorithmically created welfare losses in selective labels environments may

remain undetected for a long time and emphasizes the importance of steadily monitoring employed
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AI systems and also consulting non-technical performance measures to assess their efficacy. Addi-

tionally, this result calls for the development of novel, human-centric monitoring and performance

assessment strategies. Finally, we demonstrate that continued learning in a stable environment

where there is no discrimination can, at least to some extent, repair originally discriminatory algo-

rithms. The introduction of an updating apparatus creates feedback effects through which initial

distortions in the training data increasingly vanish. Retraining the ML algorithm on more and

more representative training data increases its predictive performance considerably over time. This

finding indicates that there can be a benefit to ensuring the continued maintenance and controlled

updating of AI systems in practice.

The paper proceeds as follows. In section 2, we summarize related literature. Section 3 develops

our game-theoretic framework that serves as a formal illustration of how the use of an AI system

may shape population-wide outcomes in terms of economic efficiency and welfare. We explain

details of the field study we conducted over the last couple of years, the structure of the data,

and the simulation exercises in section 4. Section 5 presents our results. Finally, section 6 discusses

findings and concludes.

2. Related Literature and Research Hypotheses

Our study aims to document and precisely measure causal efficiency and welfare consequences

from letting discriminating AI systems make strategic decisions under uncertainty on behalf of

human stakeholders. To this end, we choose an intentionally abstract sequential exchange setting

enabling us to observe the ramifications of counterfactual choices (consequences of choices that

have not actually been made). This provides us a unique opportunity to isolate the economic

ramifications of introducing discriminatory systems on both individual and population-wide levels

relative to a first-best scenario in which there do not exist information asymmetries. In our setting,

AI systems exhibit different degrees of discriminatory behavior against women. We use gender as

an example for a broad class of characteristics that algorithms can base discrimination on (e.g.

ethnic background, religion, sexual orientation), but we have no access to in our data. With this

objective, the article at hand contributes to three distinct streams of literature.

The first and most closely related line of work is a nascent literature concerned with algorithmic

discrimination and its consequences. This literature broadly examines how ML algorithms may

unintentionally reproduce human stereotypes, biases, and outcomes considered as unfair, e.g., by

learning encoded patterns from training data (e.g. Barocas and Selbst 2016). Over the last couple

of years, there has been a growing stream of empirical work indicating how AI systems may impose

less favorable treatment on already disadvantaged groups. Examples include racial biases in the

recidivism risk assessment (Angwin et al. 2016), predictive policing (Ensign et al. 2017), and health
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risk assessment (Obermeyer et al. 2019), as well as gender biases in the delivery of ads (Sweeney

2013, Lambrecht and Tucker 2019), and in facial recognition tasks (Buolamwini and Gebru 2018).

Due to existing correlations in the data, ML algorithms may even learn to discriminate based on

sensitive features, such as gender or race, even if these attributes have been explicitly excluded from

the training process (Kleinberg et al. 2018b). Recently, there are also some theoretical contributions

outlining that under certain conditions, biased training data may not always be as detrimental

to algorithms’ performance as one might assume (Cowgill 2018a, Rambachan and Roth 2019). In

another recent study, Adomavicius and Yang (2019) discuss a novel, fairness-aware pipeline for

augmented decision-making systems emphasizing that overcoming algorithmic discrimination does

not merely require a technical resolution of underlying algorithms but also an understanding and

alignment of human behavior and economic incentives. Their work emphasizes the central and

strategic that human decision-makers take over when it comes to correcting algorithmic discrim-

ination. Our article contributes to this line of previous work by illustrating how the degree of an

AI system’s discrimination against a subgroup in the population causally determines whether or

not its use leads to welfare gains or losses. More specifically, we produce causal evidence of how

non-randomly missing observations in the training data may cause ML algorithms to learn dis-

criminatory practices and thereby create detrimental welfare and efficiency consequences for both

discriminated and non-discriminated groups. In contrast to the limited number of related studies,

we do not use a highly specific setting and econometric techniques to approximate causal welfare

consequences. Instead, we combine simulations on a rich, real-life data set, an abstract experimen-

tal paradigm, and game theory with ML concepts to outline how discriminatory AI systems may

entail systemic consequences.

The second literature we relate to is a limited number of articles concerned with algorithmic

feedback loops. Feedback loops can occur when algorithms shape decisions whose observed out-

comes supplement the training data that is fed to the machine in the future, e.g. in the pace of an

updating process. Once these outcomes are used as training data to improve existing or develop

new algorithms, the contaminated data may reinforce inherent discrimination (Cowgill and Tucker

2019). In other words, through feedback loops, algorithms may causally affect the outcomes they

are designed to improve. Cowgill (2018b) shows the occurrence of an algorithmic feedback loop

in the context of bail decisions. The author uses a regression discontinuity design to show that

algorithmic predictions causally affect defendants’ re-arrest likelihood - the outcome the algorithm

is designed to predict - and thereby endogenously shape the training data used to develop future

algorithms. This way, the algorithm’s prediction eventually becomes a self-fulfilling prophecy alter-

ing the ground truth, in this case for the worse. Even if feedback loops can not change the ground

truth, they may cause training data to become increasingly unrepresentative when there exists a
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selective-labels problem (Lakkaraju et al. 2017). This issue occurs whenever observations for the

training data can only be collected if a decision-maker takes a particular action, e.g., we only

learn about a person’s creditworthiness if this person receives a loan and thus has the option to

pay the loan back at an agreed point in time. Over time, an algorithm may increasingly distort

training data by causing a selective enrichment of the data, lowering future predictive performance

for underrepresented types (e.g. Heckman 1979). Our results depict that in a stable environment

where there is no discrimination, continued updating can create feedback loops that increasingly

rectify unrepresentative training data. By repeatedly retraining algorithms on the more and more

representative data, even strongly discriminatory AI systems debias themselves over time without

exogenous intervention.

Finally, we also relate to articles that broadly assess the consequences of employing AI systems to

augment or automate human decision-making. In the context of medical diagnosing, Mullainathan

and Obermeyer (2017) argue that the use of predictive ML algorithms as a decision aid can amplify

existing moral hazard and policy problems in the health system, in case they are naively trained on

data prone to measurement errors. Therefore, the efficacy of employing algorithmic decision sup-

port systems depends case-by-case on the design and structure of algorithms and may not generally

augment social welfare. In a forward-looking assessment of the potential impact of AI systems on

economics, Athey (2018) argues that ML-powered technologies not only possess the potential to

create immediate efficiency gains but that their use may also entail more complex downstream

ramifications. Illustrating the complexity in assessing the total welfare consequences, Athey conjec-

tures that considerable decreases in transportation costs caused by the use of autonomous vehicles

may also decrease the housing costs for people who live within commuting distance of cities. Klein-

berg et al. (2018a) studies whether an algorithmic decision aid can improve judges’ bail decisions

by providing a prediction about a defendant’s recidivism risk. Using a data set on pre-trial bail

decisions of different judges and econometric proxies to circumvent the missing counterfactuals

problem, the authors produce evidence that machine learning applications can lead to considerable

improvements in judicial decisions and thereby enhance societal welfare. Simulations indicate that

the use of ML-powered decision support systems may reduce jailing rates by more than 40 percent

with no increase in crime rates. Brynjolfsson et al. (2019) provide an example of how the introduc-

tion of automated machine translation through Natural Language Processing on an international

trade platform significantly increases transactions and thus economic efficiency. With their setting,

the authors demonstrate how AI can help overcome barriers to efficiency, in this case, language

barriers to international trade. Chalfin et al. (2016) outline that machine learning applications

can potentially enhance welfare by providing predictions about workers’ productivity. They find

evidence suggesting that replacing currently used hiring and promotion systems with automated
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AI systems can be highly effective in increasing organizational efficiency. The authors estimate the

benefits of switching to a ML powered system by replacing the hired (promoted) subjects in the

bottom productivity decile with average productive ones and compare the overall productivity of

this new distribution with the original one. Our study mainly relates to this literature by provid-

ing evidence on how unrepresentative training data and the ongoing maintenance of algorithms

constitute a source of variation in AI systems’ potential to benefit social welfare.

3. Theoretical Framework

To be able to study the questions at hand, we deliberately choose a controlled, however, abstract

setting, where we show how the employment of a (discriminatory) AI system would affect the

well-being of actual people. More specifically, we make use of a reduced version of a one-shot

sequential prisoners’ dilemma that reflects the incentive and informational structure of any one-

shot sequential economic exchange that takes place in the absence of enforcement mechanisms,

e.g., because they are prohibitively costly or reputation effects are absent (Fehr and Fischbacher

2003, Dufwenberg and Kirchsteiger 2004). Broadly, one may conceive these sequential exchanges

as market transactions where reputation and repeated interactions, at least in the short run,

cannot serve as an enforcement mechanism (Fehr et al. 1993, Brown et al. 2004). While arguably

neglecting several aspects of real-life environments, the abstraction allows a context independent

examination efficiency and welfare ramifications of letting AI systems make decisions on behalf of

human stakeholders.

Figure 1

Note. The reduced one-shot sequential prisoners’ dilemma employed in the current paper.

The basic structure of the game is as follows. A trustor and a trustee are matched in pairs of

two. Both players are initially endowed with 10 monetary units (MU). The trustor starts to decide

whether to transfer her 10 MU to the trustee - cooperate (C) - or to keep the endowment for herself

- defect (D). If the trustor chooses to keep the endowment, the game ends and both players earn
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their initial endowment, i.e., 10 MU. However, if the trustor chooses to transfer her endowment,

the trustee observes the trustor’s decision and then chooses to cooperate or defect as well. Any

MU transferred from one player to the other is doubled (see figure 1 for an illustration).1

There are two noteworthy aspects to this structure. First, trustors make their initial strategic

decision under uncertainty, not knowing how trustees will respond. Trustees on the other hand

possess full information about trustors’ choices when deciding. In other words, there exists an

information asymmetry. Second, social welfare is maximized in case both players exchange their

endowment, i.e., carry out the exchange, while individually there exists a strong incentive for the

trustee to cheat and not to behave reciprocally. This is because the trustee’s material payoff is

maximized when receiving a transfer from the trustor while keeping his initial endowment for

himself. While abstract, this setting allows us to precisely estimate the pure efficiency and welfare

effects that the introduction of an intelligent support system may have.

Given the lack of information and the absence of other enforcement mechanisms such as reputa-

tion building, the trustor needs to assess the likelihood that her counterpart behaves reciprocally.

This is where ML algorithms, often as part of a broader information system, come in and may yield

the largest benefits. Using available information about the trustee, ML algorithms can produce a

prediction about the trustee’s likelihood to reciprocate initial cooperation by cooperating as well.

The prediction as such effectively reduces the asymmetry of information between the trustor and

the trustee and thereby the need for (more costly) enforcement mechanisms, bearing the potential

for considerable efficiency gains. Generated algorithmic predictions can then be used, either by

humans themselves or another machine, to make an optimal decision. This way, assessments are

not based on population averages, intuition, or subjective experience, which is prone to mental

errors (e.g. Tversky and Kahneman 1974, Kahneman and Tversky 1977).

In the following, we derive a simple theoretical framework to illustrate the structure of

the setting more formally and provide an analytic contemplation of how the deployment of a

(discriminatory) AI system may affect broad population-wide outcomes. We will start considering

a benchmark where there are no information asymmetries between trustors and trustees, i.e.,

where there is no need for using a ML algorithm to produce predictions about trustees’ behavioral

responses. Subsequently, we relax the assumption of perfect information and show formally how

and under what conditions ML algorithms help reduce information asymmetries.

Assume there is a continuous population of individuals with a total mass normalized to one. This

population can be interpreted as a society into which the AI system will be integrated. We model

1 Note: This reduced form of the sequential prisoners’ dilemma resembles the structure of a trust game (Berg et al.
1995)
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people’s engagement in sequential exchanges as follows. The entire population is randomly split

up in equal shares of trustors and trustees. Each trustor is randomly matched with one trustee

to play a reduced version of a one-shot sequential prisoners’ dilemma that follows the structure

explained before (see figure 1). Let the set of available pure-strategies for trustors be given by

A1 = {C,D}, where the pure strategies respectively refer to cooperation (C) and defection (D).

The pure-strategy set for trustees, conditional on the trustor initially cooperating, is equivalently

denoted as A2 = {C,D}.

The material payoff an individual i in the role k = 1,2 receives when choosing strategy ai,k ∈

Ak depends on the strategy aj,−k ∈ A−k that the matched opponent j in role −k plays.2 We

denote individual i’s payoff as πi(ai,k, aj,−k). Following the structure used in our field study, payoffs

conditional on the chosen strategies, i.e., game outcomes, are defined as depicted in figure 1.

Let every individual i be described by (θi, xi), with θi ∈ {s, r} denoting individual i’s type and

xi being a vector representing this individual’s personal characteristics. We assume that s-types,

are only concerned with their personal material payoff (selfish-types). In the role of a trustee in a

one-shot sequential prisoners’ dilemma their optimal strategy is to defect a∗i,2(s) =D if the trustor

chooses to cooperate. r-types in the role of a trustee, on the other hand, behave reciprocally, i.e.,

a∗i,2(r) = C. Notably, this setting implies that the types can only be distinguished if a trustor

initially cooperates, mirroring selective labels environments (Lakkaraju et al. 2017). The population

shares of reciprocal and selfish types are respectively denoted as µr and µs = 1−µr.

While a person’s type θi is private information, we assume that the characteristics xi of an

individual are observed. Notably, we assume that individuals themselves can not infer someone

else’s type θi, and thus trustee behavior, from observing xi. This could for example be because

the relationship is highly non-linear and imposes prohibitively high costs. This implies that there

exists a strong asymmetry in information between trustors and trustees.

The observed characteristics xi, however, can be used as an input for a trained machine learning

algorithm f(x) generating a prediction θ̂i ∈ (0,1) that a person will reciprocate cooperation as a

trustee, i.e. that a person is of type θi = r. The ML algorithm is trained on a historic data set H

comprising a large number of observational pairs (θ,x) drawn from the distribution P (θ,x). For

simplicity we abstract from the estimation problem and denote the trained algorithm as fH(x) = θ̂.

We assume that the trained algorithm is part of a broader AI system that uses the prediction to

make utility-maximizing choices on behalf of trustors.

As a representation of individual i’s personal preferences, we use a simplified version of the widely

used model by Charness and Rabin (2002). This model allows individuals to have conditional social

2 Note: −k reflects that individual j takes on the opposite role of individual i, i.e., −k = 2 if k = 1, and −k = 1 if
k = 2.
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welfare and altruistic motives by including the material payoff of other individuals as a weighted

component into the utility function. The extent of these concerns is reflected in the magnitudes of

model parameters. In a recent study, this preference model has been shown to explain empirical

observations of sequential prisoners’ dilemmas extremely well (see Miettinen et al. 2020), providing

us with confidence that the use of the model is justified. We denote an individual i’s utility function

Ui(πi, πj, θi) as

Ui(πi, πj, θi) =

{
(1− ρ(θi))πi + ρ(θi)πj if πi ≥ πj

(1−σ(θi))πi +σ(θi)πj if πi <πj

, (1)

where ρ(.) and σ(.) are type-dependent non-negative parameters with σ(.)≤ ρ(.)< 1
2
, indicating

the conditional weights individual i puts on her opponent j’s material payoff πj. Given the afore-

mentioned preferences of r and s-types, we assume that σ(r)≥ σ(s) and ρ(r)leqρ(s). The AI system

that makes decisions on behalf of trustor is individually calibrated to know the stakeholder’s utility

function.

In line with standard literature, we model individuals (and the AI system) as being rational

according to their utility functions and act as expected utility maximizers. Under this plausible

assumption, the chosen strategy a∗ ultimately reflects the solution to the optimization problem

a∗i,k = arg max
ai,k∈Ak

∑
aj,−k∈A−k

p(aj,−k) ·Ui(πi(ai,k, aj,−k), πj(aj,−k, ai,k), θi). (2)

p(aj,−k)∈ (0,1) denotes individual’s i’s belief that her opponent j will choose strategy aj,−k ∈A−k,

at the moment when i is making her decision.3 Given the structure of the game, trustees only decide

about cooperation in case the trustor initially decided to cooperate. As a consequence, trustees do

not face uncertainty about the trustor’s behavior and assign the probability of one to the strategy

C.

With the outlined maximization problem and the payoff structure defined in 1, we can derive

conditions for ρ(θi) and σ(θi) for both types θ ∈ (s, r). Substituting the payoffs into the utility

function, it is trivial to derive that trustees choose not to reciprocate initial cooperation if ρ(.)≥ 1
3
,

which is true for s-types, while they choose to reciprocate cooperation if ρ(.)< 1
3
, which is true for

r-types.

For simplicity, we assume that neither type of individual gains utility from the opponents’ mate-

rial payoff, in case their own payoff is smaller than the one of the opponent, i.e., σ(s) = σ(r) = 0.

3 Note: For simplicity we do not allow for type-dependent beliefs.
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This captures the notion that trustors do not receive a positive utility when their initial coopera-

tion is met with defection, i.e., free-riding, because they are exploited by their opponent. Hence,

we can rewrite utility function (1) as

Ui(πi, πj, θi) =

{
(1− ρ(θi))πi + ρ(θi)πj if πi ≥ πj

πi otherwise
. (3)

As a benchmark, we first solve the game assuming each trustor i observes her matched trustee’s

types θj (in addition to the trustee’s personal characteristics xj). Since there are no information

asymmetries, we can use simple backward induction to find the subgame-perfect Nash equilibrium.

Because in the equilibrium individuals will necessarily use the same type-dependent strategies, we

dispense individual indexation. Being able to identify trustees’ types and correctly anticipating

their conditional response to initial cooperation, trustors, independent of their type θ, strictly

prefer to cooperate whenever the trustee matched with them will reciprocate initial cooperation,

i.e., is of type r. Otherwise, when trustees are of type s they are strictly better off choosing to

initially defect. All proofs can be found in the appendix.

Proposition 1. Suppose trustors, before making their decision, observe trustees types θj so that

there do not exist information asymmetries. There exists a unique subgame-perfect Nash equilibria

in which

a∗(s) = a∗(r) =

{
C if θj = r

D otherwise
(4)

describe trustors’ equilibrium strategies conditional on their matched trustee’s type, and

a∗(r) =C (5)

describe trustees’ equilibrium strategies given the belief about the trustors’ chosen strategy C.

In this equilibrium, the shares of outcomes ω (a∗1, a
∗
2(a
∗
1)) where trustors cooperate are given by

ω (C,C) = µr (6)

ω (C,D) = 0 (7)

and the share of outcomes ω (a∗1) where trustors do not cooperate is given by

ω (D) = 1−µr (8)
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Under perfect information, the share of efficient outcomes where both players cooperate is at

its maximum. At the same time, there does not occur any free-riding where a trustor’s initial

cooperation is exploited and not reciprocated by a selfish trustor. This solution constitutes a

first-best scenario from the perspective of the trustor, who, in this setting, generally possess a first-

mover disadvantage whenever there exists uncertainty about the trustee’s response to cooperative

behavior. The perfect information case can serve as a benchmark against which we can compare

outcomes under uncertainty where ML algorithms can help reduce information asymmetries.

Next, we relax the assumption of perfect information and consider the case where trustors

merely observe trustees’ personal traits xj, but not their actual type θj. In this scenario, a ML

algorithm that produces accurate individual-level predictions about trustees’ types can generate

additional value by (i) preventing inefficient transaction breakdowns where trustors initially refrain

from cooperation, and (ii) helping to avoid free-riding outcomes where trustors, to their personal

disadvantage, cooperate while the trustee does not reciprocate.4

Given that we introduce information asymmetries, we now solve the outlined sequential game

with imperfect information using perfect Bayesian Nash equilibrium as equilibrium concept. The

focus lies on symmetric equilibria in which all individuals possess the same prior concerning the

distribution of types in the population and use the same type-dependent strategy. In the following,

we, therefore, again dispense individual indexation. Equilibrium strategies a∗(θ) maximize expected

utility given a belief about the opponent’s strategy p.

The utility function (3) dictates that, independent of their type, it is optimal for trustors to

cooperate if 20 · p(C|C)≥ 10, where p(C|C) denotes trustors’ common belief that the trustee will

cooperate conditional on her own prior cooperation. Since it is common knowledge that there

exist only two types in the population, of which merely r-types reciprocate cooperation, we can

substitute p(C|C) for the belief µ̂r that the trustee is of type r. A trustor, independent of her type,

will prefer to cooperate if

µ̂r ≥
1

2
(9)

This result enables us to derive equilibrium predictions for scenarios where trustors use an AI

system to make a decision on their behalf.

4 Note: Given the functional form of our utility function, the free-riding outcome, from a welfare perspective, is
strictly preferable over the defection outcome due to the mechanism that initial endowments are always doubled if
cooperation occurs, even if it is not reciprocated. Hence, there only a exists a conflict of individual and collective
interest from the perspective of the first mover if the trustee does not reciprocate.
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The AI system comprises the predictive ML algorithm fH(.) and the codified preferences of

the trustor on whose behalf the system decides. Using the prediction and the preferences, the AI

system always chooses the utility-maximizing strategy. As explained before, the ML algorithm

uses a trustee’s observable characteristics to produce an individual level prediction fH(x) = θ̂

about the trustee’s propensity to reciprocate cooperation. Since the AI system is designed to

make an optimal decision given the preferences and the algorithmic prediction, we can simply

substitute the common prior for the algorithm’s predictions µ̂r = θ̂ to model the rule according

to which the system decides. According to condition (4), there exists a unique equilibrium

in which the AI system will, independent of her human stakeholder’s type; cooperate if the

individual prediction θ̂≥ 1
2

and defect otherwise. Hence, 1
2

effectively serves as the lower threshold

for classifying a trustee as being reciprocal. Together this threshold and the type-dependent

probability distribution of algorithmic predictions q(θ̂|θ) determine the algorithm’s predictive

performance and thereby economic efficiency and social welfare.

Proposition 2. Suppose an AI system uses an individual-level algorithmic prediction about the

matched trustee’s type θ̂ to make a utility maximizing choice on behalf of a human trustor. There

exists a unique perfect Bayesian Nash equilibrium in which

a∗(s) = a∗(r) =

{
C if θ̂≥ 1

2

D otherwise
(10)

describe the AI system’s equilibrium strategies, and

a∗(s) =D (11)

a∗(r) =C (12)

describe trustees’ equilibrium strategies given the unity belief about the AI system’s chosen strat-

egy C. Conditional on the type-dependent probability distribution of algorithmic predictions q(θ̂|θ),

the shares of outcomes ω (a∗1, a
∗
2(a
∗
1)) where the trustor cooperates are given by

ω (C,C) = µr

∫ 1

0.5

q(θ̂|r)dθ̂ (13)

ω (C,D) = (1−µr)

∫ 1

0.5

q(θ̂|s)dθ̂ (14)

and the share of outcomes ω (a∗1) where the trustor does not cooperate is given by

ω (D) = (1−µr)

∫ 0.5

0

q(θ̂|s)dθ̂+µr

∫ 0.5

0

q(θ̂|r)dθ̂ (15)
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Proposition 2 depicts that an AI system’s capability to produce efficient outcomes depends on it

correctly classifying reciprocal trustees as such. The more reciprocal subjects are correctly classi-

fied as such, i.e., the higher
∫ 1

0.5
q(θ̂|r)dθ̂, the more socially efficient outcomes occur. Intuitively, as∫ 1

0.5
q(θ̂|r)dθ̂ converges to one, the share of socially most efficient outcomes converges to the perfect

information benchmark. However, when the predictive algorithm exhibits a low performance in

regards to correctly classifying reciprocal types, it increasingly steers the population away from the

first-best outcome by fostering the occurrence of inefficient, welfare minimizing outcomes of trustor

defection. In other words, proposition 2 depicts how the recall value of the AI systems predictive

ML component determines how useful the system is in terms of facilitating mutual cooperation. On

the other hand, an algorithm’s performance in correctly identifying actual selfish types determines

its ability to prevent free-riding outcomes where trustees exploit trustors’ initial cooperation. As∫ 0.5

0
q(θ̂|s)dθ̂ converges to one, the free-riding outcomes cease to occur, i.e., converge toward the

perfect information benchmark. These two insights emphasize that a ML algorithm’s ability to

reduce, or in the best case completely overcome, information asymmetries between trustors and

trustees hinges upon its recall performance scores. Notably, the share of efficient and inefficient

outcomes does neither depend on accuracy nor precision measures. This constitutes a considerable

problem in environments such as the one in our framework, where the observation of an individ-

ual’s true type depends on the actions the AI system chooses, i.e., a selective labels environment

(Lakkaraju et al. 2017), so that the underlying recall value can not be determined. This is because

it is inherently difficult to identify the share of false-negative predictions, a central component to

the recall performance measure.

Proposition 2 also provides insights into the impact of algorithmic discrimination on economic

efficiency. In line with contemplations by Adomavicius and Yang (2019), we refer to algorithmic

discrimination as algorithmically generated decisions that are inaccurate and disadvantageous for

a specific subgroup in the population. In our setting, we define algorithmic discrimination relative

to the benchmark of perfect information. Specifically, a system discriminates if its decisions for

a specific subgroup of trustees, to their disadvantage, systematically differ from decisions that

would maximize the stakeholder’s utility if these trustees’ types θ were perfectly observable. This

is the case, if the predictive ML algorithm fH(.) incorrectly produces overly pessimistic predictions

that individuals with a specific characteristic xk = 1 are reciprocal (incorrectly low values of θ̂),

while predictions for individuals with xk = 0 are accurate, leading to unfairly and inefficiently low

cooperation with trustees who have the characteristic xk = 1. The discriminatory outputs may

either occur due to explicit programming, or due to incorrectly learned statistical patterns from

data H that reflect the discriminatory practices rooted in societies (Berendt and Preibusch 2017).

With this notion of discriminatory algorithmic outputs, the recall measure for different subgroups
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can serve as a measure for discrimination as it reflects the share of r-types that are actually

identified as such. Whenever there exists an economically and statistically significant difference

in the recall value of a predictive ML algorithm fH(.) between trustees based on a specific trait

xk, e.g., male or female, black or white, Christian or Muslim, the system exhibits algorithmic

discrimination.

Following this line of argumentation, proposition 2 indicates that the share of efficient outcomes

of mutual cooperation decreases, while trustor defection occurs more frequently if a system dis-

criminates against specific subgroups. This is because the share of mutually cooperative (defective)

outcomes increases (decreases) with the population-wide recall value, which is a subgroup-weighted

average of distinct subgroups’ recall scores. Hence, if a system discriminates and therefore has a

low recall score for a specific subgroup, the share of efficient outcomes decreases. The magnitude of

the drop in efficiency naturally depends on the discriminated subgroup’s relative size in the pop-

ulation. Notably, the decrease in the frequency of cooperative outcomes creates losses for trustors

and trustees alike, so that it is not only the discriminated group that bears the costs but also the

stakeholders of the system.

4. Empirical Investigation: Field Data Collection and Simulation
Design

We base our analyses on a rich data set that we collected in an incenitivzed field study over a period

of three years between 2016 and 2019. Specifically, at the beginning of each semester, we invited

first-semester economics students from a large German University to participate in our study.

Most important for the current paper, the field study includes an incentivized one-shot sequential

prisoners’ dilemma along the lines presented before, allowing us to elicit participants’ revealed pref-

erences through their behavior instead of observing mere hypothetical survey responses. We show

the exact instructions in the Appendix B. We elicited field study participants’ behavior using the

strategy method. This is, every participant needed to define an action conditional on the choices of

the trustor, providing us the unique opportunity to observe consequences of counterfactual choices

that trustors do not actually make.5 In addition to the incentivized game, the field study com-

prises a broad set of survey items on students’ demographics, socio-economic background, cognitive

abilities, personality traits, and experimental tasks. Overall there are 49 distinct questions. We

show an overview of all items in the Appendix B in figure 11. We paid participants according to

their (and their opponents’) choices in the sequential prisoners’ dilemma. Specifically, we randomly

5 Note: In the field study, trustees not only have to decide whether to cooperate or defect if the trustor initially
cooperates but also she initially defects. However, for the study at hand, we only use observations where trustees
decide to defect if the trustor initially defected. These two types make up for 93% of our usable post-cleansing
observations. As a consequence, the game reduces to the form presented in previous sections.
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drew 5 percent of all participants and split them into equal shares of trustors and trustees. Subse-

quently, we randomly matched them in pairs of two and paid them according to the game outcome

that resulted from combining the trustor’s unconditional choice with the corresponding conditional

decision of the trustee. For each monetary unit earned in the game, chosen participants received 1

Euro. On average participants earned 13.16 Euro through their choices.6 We conducted the study

online on LimeSurvey.

Overall, we collected 3,624 individual observations that make up our raw data set. The raw data

set required considerable preprocessing due to fragmentation. After cleansing the raw data, we are

left with 1051 observations. Notably, each observation that we use for the study at hand, represents

the actual and materially consequential choices of a real person together with information about

this person’s characteristics. Specifically, each observation comprises this person’s trustor decision,

both conditional trustee decisions, and answers to 16 questionnaire items. We selected these 16

items as comprehensive empirical testing in regards to feature engineering and selection revealed

that they jointly constitute a set of strong features allowing us to create a high performing ML

model. Table 1 shows these items, together with descriptive statistics.

Table 1 Items from field study used as features to train the ML algorithm.

Item Scale Mean Std. deviation
1. Big 5: Openness (0,1) 0.625 0.208
2. Big 5: Conscientiousness (0,1) 0.669 0.171
3. Big 5: Extraversion (0,1) 0.639 0.221
4. Big 5: Agreeableness (0,1) 0.715 0.165
5. Big 5: Neuroticism (0,1) 0.522 0.215
6. Risk aversion (0,1) 0.542 0.205
7. Competitiveness score (0,1) 0.617 0.218
8. Trust in choice of study (0,1) 0.711 0.248
9. Current happiness with choice of study (0,1) 0.729 0.225
10. Likelihood of finishing studies (0,1) 0.822 0.22
11. Volunteer social year prior to studies Yes=1, No=0 0.075 0.263
12. Subject related internship prior to studies Yes=1, No=0 0.148 0.355
13. Non-Subject related internship prior to studies Yes=1, No=0 0.169 0.375
14. Apprenticeship prior to studies Yes=1, No=0 0.149 0.356
15. Foreign language spoken at parental home Yes=1, No=0 0.287 0.453
16. Gender Male=1, Female=0 0.509 0.5

Note: We normalized the scale of numeric items 1 to 10 in in the pace of the training processes.

The objective of this paper is to study individual and population-wide efficiency and welfare

effects of integrating discriminatory AI systems into human societies that inaccurately produce

disadvantageous predictions for a specific group of individuals. To do so, we use our cleaned data

as a basis for distinct simulation exercises. Notably, while we simulate the game outcomes, they

6 Note: Subjects effectively received 1 Euro per MU they earned.
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reflect outcomes of an interaction between real people and the AI system. Put differently, we do

not model or simulate trustees’ choices. Instead we are in a unique position to use actual people’s

behavior.

Simulations only differ with respect to the design of the AI system’s predictive ML component.

Simulations have the following basic structure, which mirrors our outlined theoretical framework.

At the beginning, we randomly split our cleaned data into a training set (75% of observations, i.e.,

795 observations) and a population set (25% of observations, i.e., 256 observations). The training

set is further preprocessed and then used to train, validate, and test, a ML algorithm that uses a

person’s 16 characteristics as input features to predict her likelihood to reciprocate cooperation in

the role of a trustee. We use an Adaptive Boosted Random Forest method. The forest comprises

100 individual trees with a depth of 5. Adaptive boosting refers to the sequential learning process

where each new predictor corrects the predecessor by putting more weight on training instances

that were previously underfitted. The Adaptive Boosting method is among the most popular and

most powerful ensemble methods (Freund and Schapire 1997). Our trained algorithms exhibit

a high performance on all relevant technical performance measures. Table 3 in the Appendix B

shows a performance overview of our algorithms after validation and training on a test set. At

this point it is important to emphasize that the type of algorithm we use is not of fundamental

importance here. We acknowledge that we could also employ statistical methods such as a logistic

regression and that the amount of data we harness to train the model cannot be considered Big

Data. The key notion, however, is that there exists a model with reasonably high predictive

performance (for a specific subgroup in the population) that produces a forecast which feeds into

a larger system of automated decision making. The main insights we intend to generate, namely

precisely outlining consequences of algorithmic discrimination and empirically testing implications

from our framework, are independent of the type of ML algorithm or statistical model.

Algorithm 1: Sequence of simulation exercises
Result: Game outcomes and utilities in sequential prisoners’ dilemma games
Cleaning of raw data;
while counter ≤ 10 do

1. Random partition of cleaned data - 25% population set, 75% training set;
2. Preparation of training set for training of ML algorithm;
3. Training, validation, testing of ML algorithm on training set;
4. Estimation of individual utility functions for subjects in population set;
while counter ≤ 100 do

5. Random draw of 50% of individuals in population set;
6. Random partition of selected individuals in trustors and trustees;
7. Random matching of trustors and trustees in pairs of two;
8. Matching of AI system trustor decisions with trustees conditional choices, determination of game outcomes

and utilities.;
9. Compute diverse performance metrics

end
end
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The population set, on the other hand, is used to simulate the reduced sequential prisoners’

dilemma games. This is done in three steps which are repeated 100 times. First, we randomly select

half of the individuals from the population set. Second, the drawn individuals are randomly split in

equal shares of trustors and trustees. Third, the trained ML component produces predictions about

trustees’ likelihood to reciprocate cooperation. The decision making component subsequently uses

this prediction and individual trustors’ previously estimated utility functions7 to compute whether

cooperation or defection yields a larger expected utility. The AI system’s decision is the utility-

maximizing strategy, which is then matched with the corresponding conditional response of the

trustee, to determine outcomes and utilities. Every simulation is replicated 10 times. Overall, each

simulation comprises 64,000 distinct games. An overview of this simulation process can be found

in the depicted pseudo code 1.

We are mainly interested in the ramifications of discriminatory algorithmic outputs, i.e., outputs

that are inaccurate for a specific group of individuals (here: women) and thereby lead to unfair

and disadvantageous outcomes for these individuals, as compared to individuals not belonging to

this group (here: men). To this end, we deliberately manipulate the predictive ML component of

AI systems so that it systematically underestimates the probability that a female trustee, relative

to a male trustee, will reciprocate cooperation, even though female individuals in our data set are

on average significantly more likely to reciprocate than men (75.4% vs. 68.1%, Wilcoxon rank-sum

test p < 0.000). As a consequence, the AI system will unfairly cooperate less often with women,

reducing their potential payoffs. While discriminatory outputs may result from both explicit

programming or due to societal patterns incorporated into the data, we introduce the algorithmic

discrimination by means of imbalancing the training set (in step 2 in pseudo code 1), while holding

the overall number of observations fixed. This way we control for the overall amount of training

instances. We vary the share of reciprocal examples among women from 0 (no reciprocal women at

all) to 0.5 (balanced share of reciprocal and non-reciprocal women) with a step-size of 0.05. With

less examples of reciprocal women to learn from, the likelihood of correctly classifying reciprocal

(selfish) women will decreases (increase). Male observations in the training data set were perfectly

balanced with regards to the label. This is, in the course of preprocessing the data, we ensure that

for male observations, there is an equal share of reciprocal and selfish examples in the training

set, so that the classification of reciprocal and selfish men works equally well.

7 We use subjects’ trustee decisions from the field study, to estimate individual level parameters of a simplified version
of the social preference model by Charness and Rabin (2002), which we explained in detail in the section where we
presented our theoretical framework.
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The use of the gender attribute should be understood as a representative example of a broad

range of characteristics that algorithms may discriminate on. Yet, we choose the gender attribute,

together with introducing the discrimination through imbalances in the training set, as an exam-

ple of algorithmic discrimination to pin down the consequences of discriminatory systems for two

reasons. First, there exists ample scientific and anecdotal evidence showing that algorithmic dis-

crimination against women, e.g. due to previous discriminatory practices encoded in training data,

is an actual, considerable societal problem (e.g. Sweeney 2013, Buolamwini and Gebru 2018, O’Neil

2018, Lambrecht and Tucker 2019). Second, male and female participants in our field study exhibit

a statistically significant difference in their propensity to reciprocate cooperation in the role of

the trustee (respectively 75.4% and 69.1%, χ2-test: p<0.000). As a consequence, from a technical

perspective, the variable gender possesses explanatory power concerning a person’s likelihood to

behave reciprocally, allowing us to introduce algorithmic discrimination in the first place.

Finally, to examine interaction effects between algorithmic discrimination and continued updat-

ing, specifically retraining of the algorithm, as well as algorithmic feedback loops, we deploy a

slightly adapted simulation sequence. This sequence differs from the previously explained one (see

pseudo code 1) only with regards to the inclusion of two additional steps at the end. In each itera-

tion, after determining game outcomes, the previous training data set is supplemented by trustees

(their 16 personal characteristics and their choice when the trustor cooperates) whose matched

trustor initially cooperated. Subsequently, we retrain the AI system’s predictive ML component

on the appended training data. The retrained ML component then makes predictions in the next

iteration. With this procedure, the algorithmic prediction endogenously shapes the structure of the

training data on which we retrain the algorithm in the next iteration and thus future predictions.

As a consequence, our setting allows the occurrence of data-driven feedback loops. An overview

of this slightly adapted simulation process can be found in the depicted pseudo-code 2 in the

appendix.

5. Empirical Investigation: Results

We present the results of our simulation exercises in three parts, mirroring our theoretical frame-

work. First, we examine how well a non-discriminatory AI system performs in making trustor

decisions, relative to a perfect information benchmark. The perfect information benchmark gives

an idea about how well the system bridges information asymmetries between trustors and trustees.

These findings serve as a reference point enabling us to outline how results change in case the

underlying ML algorithm increasingly discriminates against women. By doing so we show in detail

the role algorithmic discrimination plays regarding AI systems’ potential to produce efficient out-

comes. Finally, we study to what extent continued learning may, over time, enable a strongly

discriminatory ML algorithm to recover itself.
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5.1. Non-discriminatory AI system

We start our analyses by examining the performance of a non-discriminatory AI system in making

decisions on behalf of human trustors. Non-discriminatory refers to the fact that in comparison

to subsequent AI systems, we did not intentionally introduce algorithmic discrimination in the

form of systematically inaccurate predictions against women. A Wilcoxon rank-sum test reveals

that the prediction errors between women and men are not significant, despite the large sample

size (p < 0.12). Notably, even though economically insignificant, the recall value for women is

even 6.1 percentage points higher for women compared to men. We initially focus on the system’s

performance from the perspective of human stakeholders. We will consider two distinct measures.

First, we compare the shares of cooperative trustor decisions. Subsequently, we consider differences

in average trustor utility across the two scenarios.

Figure 2

Note. Panel (a) represents the shares of cooperative trustor decisions, while panel (b) shows average trustor utility.

Both panels depict results for the benchmark of perfect information and an AI system.

Figure 2 depicts the shares of cooperative trustor decisions (panel (a)) and the average trustor

utility the system generates (panel (b)) for both a benchmark of perfect information where trustees’

types are observable and the case where an AI system decides on behalf of human stakeholder

under imperfect information. We use the perfect information scenario as a benchmark throughout

the empirical part of the paper because it indicates how well the AI system performs in over-

coming information asymmetries by providing accurate individual-level predictions in an uncertain

environment.

Under perfect information, a trustor would cooperate in 71.6% of the cases. In comparison,

the AI system cooperates in 68.5% of the cases, which is a difference of 3.1 percentage points.

While this difference appears to be rather small, indicating a high performance of the system, a
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comparison of the average trustor utilities reveals that there are considerable inefficiencies. On

average, the AI system creates a utility of 13 units for human stakeholders. In the first-best scenario

the average trustor utility equals 17.16 units. Put differently, the non-discriminatory AI system,

from the perspective of their human stakeholders, reaches about 75% (=13/17.16) of the maximum

possible utility. Looking at individual choices, we find the AI system to make the same decision that

would occur under perfect information in only 58.4% of the games. More specifically, conditional

on the trustees’ types, the AI system correctly chooses to cooperate (defect) in 80% (29.1%) of the

cases. This suggests that the system, while exhibiting similar cooperation rates as under perfect

information, frequently chooses to cooperate even though the trustee does not reciprocate, while

it also frequently defects even though the trustee would have reciprocated.

Figure 3

Note. We depict relative frequencies with which different game outcomes occur. Mutually cooperative (CC), trustor

defection (D), and free-riding (CD) outcomes. Panel (a) represents bench-mark results; panel (b) represents results

for the AI system

Naturally, this pattern of decision making has population-wide consequences for the efficiency of

game outcomes. Figure 3 shows the shares of overall game outcomes. Panel (a) depicts outcomes

for the benchmark, while panel (b) illustrates the AI system scenario. CC, D, and CD respectively

refer to outcomes where trustors and trustees both cooperate, where trustors defect, and where

trustors cooperate while trustees defect.

Panel (a) depicts that under perfect information, the socially efficient outcomes of mutual coop-

eration occurs in about 71.6% of the games, while the share of defective outcomes equals 28.4%.

Naturally, there are no free-riding outcomes where initial cooperation is exploited by a trustee

under perfect information. Observations in panel (b) depicts that the AI system can only reach
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the most efficient outcome in 49.2% of the cases. This is 22.4 percentage points short of the bench-

mark, implying that in 22.4% of the cases, the system defected even though cooperation would

have resulted in the socially and individually most efficient outcome. Put differently, in about

one quarter of all games, there is space for a Pareto improvement where trustors and trustees

can simultaneously be made better off without making any one of them worse off. On the other

hand, in 19.2% of the games, the AI system initially cooperated to the disadvantage of the human

stakeholder.

Figure 4

Note. Panel (a) represents average welfare, while panel (b) shows average trustee utility. Both panels depict results

for the benchmark of perfect information and an AI system.

Figure 4 depicts the consequences of the AI system’s incorrect decisions in terms of average

population welfare and average utility trustees gain when interacting with the system. The figure

shows that the aforementioned Pareto inefficiencies translate into welfare losses relative to the first

best scenario. The AI system reaches an average of population welfare (the sum of trustor and

trustee utility) of 31.8 units, which is about 92.7% of the perfect information benchmark. However,

one can also see that the relatively small difference to the benchmark is at least in part driven by

free-riding outcomes which considerably increase trustees’ well-being. Compared to the benchmark

case, the average utility of trustees is 1.6 units higher (+9.3%). When excluding the outcomes

where social welfare increases due to free-riding, at the expense of the trustor, we find the machine

to reach about 87% of the welfare level that occurs under perfect information.

5.2. Discriminatory AI Systems

After we have outlined the performance of an AI system that does not discriminate against women

and compared its performance in terms of efficiency and welfare to a benchmark of perfect infor-
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mation, we now proceed with the main part of our empirical analyses and outline how previous

results change in response to introducing algorithmic discrimination.

We intentionally introduce algorithmic discrimination of the AI system against women by train-

ing ML algorithms that, ceteris paribus, estimate women to be less likely to reciprocate cooperation

than men, despite them being more likely to do so. When an AI system’s ML component system-

atically underestimates the probability that female trustees reciprocate initial cooperation, it will,

to females’ disadvantage, defect more often when interacting with them. We choose the gender

attribute as a basis of discrimination to showcase the consequences on efficiency and welfare.

We create algorithmic discrimination by imbalancing the training set. In imbalanced training

sets, the share of non-reciprocal female observations exceeds the fraction of reciprocal ones for

a fixed level of female observations. The data available to train the ML algorithm is therefore a

non-representative subsample for women. We vary the share of reciprocal examples among women

in the training set from 0 (no reciprocal women at all) to 0.5 (fully balanced shares of reciprocal

and non-reciprocal women) with a step-size of 0.05. The balanced case is the benchmark that we

analyzed in the previous section. At this point, we want to emphasize that the analyses do not

aim at discussing the reasons for AI systems to learn discriminatory behavior. Our intention is to

outline a clear and precisely quantifiable empirical example of how algorithmic discrimination can

negatively impact economic efficiency and welfare, thereby substantiating implications from our

theoretical framework.

To see that we successfully introduced algorithmic discrimination, consider table 2 which depicts

the average predicted probabilities that women and men cooperate, conditional on the degree of

imbalance together with recall scores for men and women. As argued in our theoretical frame-

work, the recall score depicts algorithmic discrimination by revealing that the algorithm makes

significantly less capable of correctly identifying female reciprocators as such. The table shows that

the ML algorithm increasingly underestimates the likelihood that women in the player set recip-

rocate cooperation when the relative share of reciprocal female examples decreases. For men, the

average predicted probabilities are about the same across different degrees of imbalance. Wilcoxon

rank-sum tests reveal that, except for the 50% case (p < 0.12), the average predictive errors are

significantly different for women and men (p < 0.000 for all other cases). The ML algorithm thus

learns an incorrect representation of women’s trustee behavior, while the representation for men is

more precise so that the system produces systematically less favorable predictions for women.

Given that we have successfully introduced algorithmic discrimination in our framework, we now

examine to what extent our previous results change when the AI system, to a varying degree,

discriminates against women. We start examining how discrimination, measured by the recall

scores, influences the AI system’s performance from the perspective of the human stakeholder.
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Table 2

Share of reciprocal examples among female observations in the training set
0% 5% 10% 15% 20% 25% 30% 35% 40% 45% 50%

Recall women 0.02 0.11 0.21 0.33 0.4 0.49 0.57 0.61 0.66 0.67 0.71

Mean pred. 0.03 0.15 0.25 0.36 0.42 0.5 0.56 0.59 0.64 0.64 0.69
women (0.107) (0.257) (0.314) (0.344) (0.364) (0.358) (0.357) (0.35) (0.339) (0.33) (0.318)

Recall men 0.6 0.62 0.6 0.61 0.61 0.62 0.63 0.64 0.65 0.68 0.66

Mean pred. 0.58 0.58 0.58 0.58 0.58 58 0.59 0.6 0.61 0.63 0.62
men (0.389) (0.375) (0.371) (0.362) (0.356) (0.352) (0.35) (0.354) (0.342) (0.339) (0.34)

We show the share of reciprocal individuals, mean predicted probabilities together with standard errors, and recall scores of different

ML algorithms. The true average share of reciprocal women equals 0.75 (0.435). The true average share of reciprocal men equals 0.69
(0.462). We report standard errors in parentheses.

Subsequently, we outline population-wide efficiency and welfare ramifications. Note that we always

consider results relative to the benchmark of perfect information allowing us to see by how much

algorithmic discrimination impedes the bridging of information asymmetries between trustors and

trustees.

Figure 5

Note. We show results relative to the benchmark of perfect information. From left to right panels show results for

(a) the entire sample of games, (b) the subsample of games with female trustees, and (c) the subsample of games

with male trustees. Results for a share of 50% of reciprocal observations among female examples in the training data

represent the non-discriminatory case from the previous section and are depicted as horizontal line.

Figure 5 depicts the performance of AI systems, relative to the perfect information benchmark,

conditional on the degree of discrimination against women. Following our theoretical framework,

we measure discrimination by the corresponding (sub)samples’ recall scores. Depicted plots show

the difference in the average utility of trustors. The horizontal line depicts the reference value of the

non-discriminating AI system we explored in the previous section. Negative values on the Y-axes
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indicate that the AI system cooperates less (generates less trustor utility) compared to the perfect

information case. Positive values would indicate the reverse. Panels (a), (b), and (c) respectively

show results for all games, the subsample of games where trustees are women, and the subsample

of games where trustees are men.

The figure portrays that an AI system’s capability to produce outcomes that are utility-

maximizing from the perspective of the human stakeholder negatively depends on the degree to

which the system discriminates against the subgroup of women in the population. The more inac-

curate algorithmic predictions are for women, the less trustor utility the system generates. This

observation mirrors the implications of our theoretical framework. Both, the produced trustor util-

ity sharply increase with the recall score, i.e., decrease with the extent of algorithmic discrimination.

On average, the trustor utility increases by 0.05 units per percentage point of recall score.

Intuitively, the negative effects of algorithmic discrimination for trustors are driven by instances

where the trustee is a woman (see panel (b)) since the predictive performance is low for this group

of individuals. When the most discriminatory system (recall value for women is equal to 0.02)

makes trustor decisions, the average utility of trustors is about 3.4 units lower compared to the

case where the system does not discriminate. This is an economically and statistically significant

decrease by more than 25% of trustor utility. Notably, the relation between the recall score, trustor

utility is also present when considering the subsample of male trustees, which slightly varies with

the imbalance in the female training observations as well.

Overall, these observations provide empirical support for our model implications that we discuss

in the theory section of the paper. It is in the interest of trustors that the AI system that decides on

their behalf does not unfairly discriminate as their utility decreases with the degree of the extent

of discrimination against women.

Result 1 There exists a strong negative relation between human stakeholders’ economic well-being

and the extent of discrimination of an AI system that makes decisions on the human’s behalf. The

more the system discriminates, the worse off is the human stakeholder in terms of utility. An AI

system’s capability to overcome information asymmetries in favor of the trustor critically depends

on the absence of algorithmic discrimination.

Next, we consider how discrimination against women affects the population as a whole. Figures

6 and 7 respectively illustrate population-wide effects in terms of how the occurrence of game

outcomes and population welfare as well as trustee utility diverges from the perfect information

baseline when the AI system increasingly discriminates against women. We show results for all

games (panel (a)), the subsample of games where trustees are women (panel (b)), and the subsample
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Figure 6

Note. We depict differences in relative frequencies with which specific outcomes occur. We show results relative to

the benchmark of perfect information. From left to right panels show results for (a) the entire sample of games, (b)

the subsample of games with female trustees, and (c) the subsample of games with male trustees. Results for a share

of 50% of reciprocal observations among female examples in the training data represent the non-discriminatory case

from the previous section and are depicted as horizontal lines.

of games where trustees are men (panel (c)). Again, horizontal lines depict the reference values of

the non-discriminating AI system we explored in the previous section.

Both figures emphasize the detrimental population-wide consequences that the use of discrimi-

natory AI systems may entail. The more a system discriminates, the more it increases (decreases)

the occurrence of the socially most efficient (inefficient) outcome (see figure 7). Compared to the

non-discriminatory system, the most discriminatory one reaches the mutually cooperative outcome

27.6 percentage points less often (drop from 49.3% to 21.1%), while the occurrence of initial defec-

tion is 37.7 percentage points higher (increase from 31.5% to 69.2%). These negative ramifications

are largely driven by games where trustees are female. Showcasing the significantly less favorable

treatment of women compared to men, in the most discriminatory case, the AI system only cooper-

ates in 1.5% of the cases where it would have been optimal to do so in case the trustee is a woman.

In contrast, this AI system does so in 60.3% when a trustee is a man.

Due to highly discriminatory systems’ inefficiently low cooperation with female trustees, social

welfare decreases substantially. Comparing the system that discriminates most strongly with the

one that does not exhibit algorithmic discrimination, welfare subsides by 6.5 units (from 31.8 to

25.3 units) which equals a reduction of 20%. Highlighting the severely unequal treatment in the

most discriminatory system, it is the group of female trustees who bear the brunt of the welfare loss

since their average utility drops by about 9 units (from 19.2 to 10.2). In comparison, the average

trustee utility for men merely drops by 0.6 units.
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Figure 7

Note. We depict differences in welfare and trustee utility. We show results relative to the benchmark of perfect

information. From left to right panels show results for (a) the entire sample of games, (b) the subsample of games

with female trustees, and (c) the subsample of games with male trustees. Results for a share of 50% of reciprocal

observations among female examples in the training data represent the non-discriminatory case from the previous

section and are depicted as horizontal lines.

Result 2 There exists a strong negative relationship between the extent of algorithmic discrimina-

tion and economic efficiency as well as population welfare. The discriminated group bears the brunt

of the harm. The potential to augment social welfare is inextricably linked to a system’s resilience

not to inherit discriminatory behavior in the training process.

In the setting we consider, the true label of a trustee, i.e., whether this person reciprocates coop-

eration or not, is only observed in case the trustor initially cooperates. Initial defection, however,

ends the game so that there are no information about the trustee being a reciprocator or not. As

shown before, the trustee may be a reciprocator who has falsely been classified as someone who

does not respond to cooperation with cooperation without the AI system ever ’finding out’. This

selective labels issue (Lakkaraju et al. 2017), reflects the fundamental structure of a multitude of

real-life situations in which algorithms automate or augment decisions. Examples include patrolling

decisions of the police (Ensign et al. 2017), bank officers issuing loans (Huang et al. 2007), and

judges making bail decisions (Kleinberg et al. 2018a), to name only a few.

In our study, we are in an unusual position to observe a trustee’s response even for trustor

choices that did not actually happen. As a consequence, we can compute the real recall performance

score. In real-life scenarios, however, one naturally does not observe the accuracy of a prediction

that evokes the decision where no label is produced, e.g. one does not know whether a negative

prediction about a person’s creditworthiness is accurate if the predictions leads to the decision not
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to issue a loan. The measurement and assessment of an algorithm’s performance is thus limited to

the selectively generated outcomes, which may lead to incorrect conclusions.

Figure 8

Note. We depict the predictive performance of ML algorithms. We show results conditional on the imbalance in the

subset of training examples for women. Panel (a) depicts the precision metric. Panel (b) the recall metric.

To illustrate this issue, consider figure 8 which portrays performance metrics for AI systems

conditional on the imbalance in the subset of training examples for women. Panel (a) depicts the

share of utility-maximizing trustor decisions given that the system cooperated (i.e. the precision

score), which is the measure that is available in real-life situations. Panel (b), on the other hand,

shows the share of utility-maximizing trustor decisions given that cooperation would have been

reciprocated (i.e. the recall score), which is generally not available in real-life scenarios.

The figure depicts an alarming pattern. Independent of the inherent algorithmic discrimination,

and thus of the negative efficiency and welfare consequences we outline above, the precision metric

indicates that about 71% of the decisions to cooperate are correct (see panel (a)). This conveys

the impression that all AI systems perform equally well. Even the most discriminatory and welfare

reducing AI system may be incorrectly assessed as performing reasonably well if one bases the

evaluation on this metric. In line with our theoretical framework, panel (b) paints a more accu-

rate picture of the AI systems’ performance. It highlights that the overall recall score is sensitive

to the algorithm’s degree of discrimination. The more the system discriminates, the lower is the

value of this performance metric. For instance, instead of indicating that the most discriminatory

system performs about as well as the non-discriminating one (respective precision scores: 0.71 vs.

0.72), the recall score shows a considerably lower performance for the most discriminatory system

(recall scores: 0.3 vs. 0.69). Unfortunately, it is not possible to retrieve the recall measure in cases

where labels are generated selectively, only the precision score. This emphasizes the significance
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of a careful interpretation and assessment of available performance metrics on AI systems, espe-

cially in environments where the problem of the selective labels likely occurs. If one uses these

measures as a basis to decide about the continued or magnified employment of these machines,

there could be detrimental society-wide ramifications without decision-makers even knowing that

a more efficient outcome would have been feasible. This finding supports arguments by Adomavi-

cius and Yang (2019) that algorithmic discrimination is a complex issue whose resolution requires

human involvement for understanding the source of the issue and defining appropriate performance

measures.

Result 3 In an environment of selective labels, the accurate evaluation of algorithmic performance

is difficult and prone to be misleading. Standard available performance measures such as the preci-

sion score can provide a highly inaccurate picture of AI systems performance.

5.3. Algorithmic Discrimination and Continued Learning

So far, our empirical results emphasize the problems algorithmic discrimination may produce con-

sidering economic efficiency and social welfare. These observations imply that to maximize the

potential benefits of AI systems for societies, it is important to further our understanding of how

to counteract algorithmic discrimination.

We, therefore, devote the final part of our analyses to studying how algorithmic discrimination

endogenously changes if systems continue to learn within an environment where the originally

learned discrimination is no longer present. The notion of why this may be the case is as follows.

ML algorithms learn from data that is assumed to be drawn from a fixed, unknown distribution.

When algorithms learned to make systematically incorrect predictions for unseen out-of-sample

examples, it is from a technical perspective because the distributions from which the training and

out-of-sample examples are drawn differ fundamentally. If we interpret this difference as being

the result of a change in a non-stationary environment, algorithmic discrimination, at least in

terms of systematically incorrect predictions, can be interpreted as an inherent concept drift, i.e., a

fundamental change in the representation to be learned (Widmer and Kubat 1996). In the domain

of learning in non-stationary environments, the literature has argued that continued learning may

be a natural remedy to deal with concept drifts by adapting learned representations dynamically

over time (e.g. Jordan and Mitchell 2015, Elwell and Polikar 2011).

Following this notion, we study the development of algorithmic discrimination over time, when

we continuously update the ML component of our AI system using training data supplemented by

previous game outcomes from the population. We consider 100 rounds of play where we retrain the

ML algorithm using the original training set supplemented by the game outcomes of all previous

periods. This setting mirrors a scenario where a fixed population of individuals interacts with
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each other (and the AI system) over a certain period. Note that continued learning in our context

technically implies that the original training set is increasingly supplemented by a limited number

of distinct observations from the population set. As a consequence, the predictive ML algorithm

will likely overfit after some periods. The point of the analyses, however, is to document whether

continued learning on a fixed population that systematically differs from the original training set

can mitigate algorithmic discrimination over time. Therefore, the issue of overfitting is of secondary

importance to our endeavor.

To ensure a better overview, we will focus on three AI systems that differ with regards to the

discrimination we initially introduce through distorting the original training data. We consider (i)

the non-discriminatory AI system where female examples are balanced with regards to the labels;

(ii) an intermediately discriminatory AI system where the share of reciprocal examples among

female observations equals 20% ; and (iii) a strongly discriminatory AI system where there are no

reciprocal female examples in the original training data. At this point, it is important to emphasize

the selective labels setting. Given the structure of the game and the predictive ML algorithm,

observed game outcomes can only supplement the training data in case the AI system cooperates.

As a consequence, a continuous extension of the training data with selective observations also bears

the risk of further distorting the data used to (re)train the predictive algorithm so that existing

discriminatory patterns are maintained or even reinforced via feedback loops (Cowgill and Tucker

2019).

Since the harmful population-wide consequences of employing discriminatory algorithms stem

from systematically incorrect predictions about women’s likelihood to reciprocate cooperation, we

look at the development of predictions by the ML algorithm over time. More specifically, the

development of prediction errors.

Figure 9 shows the development of the mean squared error of the predicted probability that

a trustee is a reciprocator over time under continued learning. We display results for the overall

sample of games (panel (a)) and subsamples of games with female and male trustees (respectively

panel (b) and (c)). Illustrated results indicate that continued learning in our setting, at least to

some extent, provides a remedy for algorithmic discrimination over time. By using the response

and characteristics of trustees against whom the AI system cooperated as additional observations

to supplement training data and retrain the algorithm, the predictive performance of all three

algorithms increases substantially over time. Even for the most discriminatory algorithm, the mean

squared error for the entire sample decreases from 0.52 to 0.26 after 25 rounds of play (see panel

(a)). After 50 periods, the error further dropped to 0.1. This decrease is driven by both, improved

performance when the trustee is a woman and a man. Notably, while the predictive error for men

is still smaller than for women (0.04 vs. 0.17), the difference has decreased from initially 0.33 (0.37
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Figure 9

Note. We depict mean squared errors of predicted probabilities over time. From left to right panels show results for

(a) the entire sample of games, (b) the subsample of games with female trustees, and (c) the subsample of games

with male trustees.

vs. 0.7) to 0.13. With regards to the intermediately discriminatory algorithm, the initial difference

in the performance between men and women even vanishes entirely (from 0.3 vs. 0.43 to 0.04

vs. 0.04). The displayed results further suggest that the degree and speed with which continued

learning can mitigate algorithmic discrimination does depend on the extent of the original extent

of it. The mean squared error curve in panel (b) for the intermediately discriminatory algorithm is

found to be steeper than the one for the strongly discriminatory algorithm. Corresponding curves

in panel (c) are virtually identical. This suggests that the algorithm with the intermediate level of

discrimination unlearns systematically incorrect predictions for women, in favor of more accurate

ones, faster than the algorithm exhibiting the strongest initial discrimination. One explanation,

corroborated by our data, is that the less discriminatory system initially cooperates more with

female trustees and thus creates larger amounts of additional training data which helps to improve

the predictive performance.

In general, it appears that feedback loops drive the observed self-correction process. By increas-

ingly supplementing original training data with observations from the population set, the original

differences in the training and population sets disappear. Retraining the ML algorithm on more

and more representative training data helps increasing its predictive performance. Thereby the AI

system correctly cooperates more often, which in turn leads to an accelerating enrichment of the

training data with new, representative observations. Given that the most discriminatory system

initially barely cooperates with female trustees (only in about 1% of the cases), it seems that even

a few additional observations can, after some time, invoke the self-correcting feedback loop.
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Overall, these observations emphasize that continued learning may lead to considerable increases

in predictive performance, which are associated with a decrease in algorithmic discrimination. The

improved performance and mitigated discrimination naturally translate into positive efficiency and

welfare consequences (see figures 12, 13, 14 and 15 in the appendix).

Result 4 Continued learning can improve ML algorithms’ predictive performance over time. Sup-

plementing the training data with affected outcomes and retraining the algorithm can mitigate

algorithmic discrimination even in environments of selective labels and if the system’s initial level

of discrimination is very high.

6. Discussion and Conclusion

With the paper at hand, we contribute to discussions about the broad consequences of employing

discriminatory AI systems. We use both a theoretical framework and an empirical investigation to

outline and quantify the potential detrimental efficiency and welfare ramifications of such systems.

Our theoretical and empirical results provide causal evidence that the employment discriminatory

AI systems can significantly decrease economic efficiency and social welfare on an individual and

a population-wide level. In our setting, AI systems that make systematically incorrect choices

when interacting with females can cause considerable efficiency losses and decrease social welfare,

especially for the discriminated groups. Considering that algorithmic discrimination often originates

from historic societal discrimination that is encoded in data, these AI systems entail the risk of

maintaining and, depending on their scope of application, scaling discriminatory practices. This is

particularly concerning given that inherent algorithmic discrimination is frequently hard to detect

so that it may have already been institutionalized and led to considerable social problems for the

disadvantaged group. In that sense, our results emphasize the importance to ensure that broadly

employed AI systems work accurately for all groups. To this end, it is vital to identify adequate

performance metrics and monitoring mechanisms. However, as shown, this can be particularly

difficult in selective labels settings, where algorithmic performance can only be measured on a

highly endogenous subsample of outcomes, so that even algorithms that do very poorly convey a

false impression of performing well. This emphasizes the danger that algorithmic discrimination,

with its negative ramifications, remains hidden over a long period and calls for human oversight.

Additional findings in our paper also show a silver lining in this regard. In particular, our analyses

suggest that continued learning can provide a remedy to systematically inaccurate ML behavior.

In that regard, our insights indicate the superiority of continuously learning AI systems over static

ones in domains where there is a strong likelihood that predictive algorithms are originally trained

on data suffering from non-randomly missing observations through past sample-selection. Static
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algorithms that are not improved over time and will always exhibit a low performance with regards

to discriminated groups. Algorithms that continue to learn may autonomously improve their pre-

dictive performance for underrepresented groups over time due to inherent, data-driven feedback

loops. Against this background, organizations may be well advised to implement a process ensuring

the continued collection of new training examples and updating of employed AI systems.

Finally, we hope to inspire future research on algorithmic feedback loops and their interaction

with algorithmic discrimination. From a policy maker’s perspective, it is important to understand

how interventions intended to ban human discriminatory practices may interact with discrimina-

tory, continuously learning AI systems in the long run. Especially when algorithmic discrimination

is hard to detect and thus likely to remain unaddressed explicitly, it is vital to have insights into

dynamic relations between regulation and AI systems so that organizational and political reforms

can be better informed.
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Appendix A: Proofs of Propositions

Let Ui(ai, aj) denote the utility of trustor i given that the trustor chooses strategy ai ∈ (C,D) and the

assigned trustee chooses to respond aj ∈ (C,D) conditional on observing ai =C. If i chooses strategy ai =D,

the game ends without j choosing a strategy. There are two types θ ∈ (r, s) - reciprocal (r) and selfish (s) -

whose preferences are given by

Ui(πi, πj , θi) =

{
(1− ρ(θi))πi + ρ(θi)πj if πi ≥ πj

πi otherwise
. (16)

πi and πj respectively describe material payoffs earned by the trustor and the trustee. r- and s-types’

optimal pure strategies in the role of the trustee, conditional on initial cooperation, are respectively given

by a∗(r) = (C) and a∗(s) = (D).

µ̂r describes trustors’ common prior that an assigned trustee is a reciprocal type. Given the population

only comprises reciprocal (r) and selfish types (s), initial cooperation is the utility-maximizing decision for

trustor i iff

µ̂r ·Ui(C,C) + (1− µ̂r) ·Ui(C,D)≥Ui(D). (17)

The game structure and payoffs given a certain outcome equal the following structure:

Figure 10

Note. The reduced one-shot sequential prisoners’ dilemma employed in the current paper.

Given the depicted payoff structure, it holds for both types that Ui(C,C) = 20, Ui(C,D) = 0 and Ui(D) = 10.

As a consequence, we can rewrite condition (17) as

µ̂r · 20 + (1− µ̂r) · 0≥ 10. (18)

Proof Proposition 1:
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Under perfect information where trustors observe trustees’ actual types θ before making a decision, beliefs

reduce to unity probabilities conditional on the observed type, i.e., µ̂r = 1 if a trustee is of type r and

µ̂r = 0 if a trustee is of type s. It follows that whenever a trustor is matched with a trustee of type r initial

cooperation is strictly preferred because condition 18 is satisfied (20≥ 10), while defection is preferred if the

trustee is of type s because condition 18 is violated (0< 10). As a consequence, the game results in mutual

cooperation whenever the trustee is of type r, while the game end with the trustor defecting whenever the

trustee is a s-type.

Proof Proposition 2:

Let an AI system comprise the predictive ML algorithm fH(.) and the codified preferences of the trustor

on whose behalf the system decides. fH(x) = θ̂ ∈ (0,1) denotes an individual level prediction that a trustee

is of type r. The AI system always chooses the strategy that maximizes the trustor’s utility. Hence, the AI

system chooses to cooperate iff

θ̂ · 20 + (1− θ̂) · 0≥ 10 (19)

which is the case whenever θ̂≥ 1
2
. Let q(θ̂|θ) be the type-dependent probability distribution of algorithmic

predictions. Given this distribution, the AI system eventually (i) cooperates given the trustee is an r-type with

probability of
∫ 1

0.5
q(θ̂|r)dθ̂, (ii) defects given the trustee is an r-type with probability of 1−

∫ 1

0.5
q(θ̂|r)dθ̂ =∫ 0.5

0
q(θ̂|r)dθ̂, (iii) cooperates given the trustee is an s-type with probability of

∫ 1

0.5
q(θ̂|s)dθ̂, and (iv) defects

given the trustee is an s-type with probability of 1−
∫ 1

0.5
q(θ̂|s)dθ̂ =

∫ 0.5

0
q(θ̂|s)dθ̂. Depending on the actual

population shares of r-types µr and s-types 1 − µr = µs, the outcome of (i) mutual cooperation occurs

µr

∫ 1

0.5
q(θ̂|r)dθ̂ times of the cases, (ii) initial defection occurs (1−µr)

∫ 0.5

0
q(θ̂|s)dθ̂+µr

∫ 0.5

0
q(θ̂|r)dθ̂ times of

the cases, and (iii) free-riding occurs (1−µr)
∫ 1

0.5
q(θ̂|s)dθ̂ of the cases.
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Appendix B: Supplementary Material

Goethe Study Panel: Survey 

Welcome to the website of the online survey of the Goethe Studies Panel. We would appreciate 
if you could take a few minutes to fill out the questions. This survey is aimed at students of 
economics at Goethe University. The participation is voluntary. However, the significance of 
this survey depends decisively on the cooperation of all students. Therefore, we cordially ask 
you to answer questions carefully and without consultation with other persons.  

 

Questions on family background 

Personal background 

 

How far do you live from your parents?  

Please select only one of the following answers: 

x I live at my parents 
x 1-10 KM away 
x 11-50 KM away 
x 51-150 KM away 
x More than 150 KM away 

 

Have you, due to your studies at the Goethe-University, changed your place of residence 
changed?  

Please select only one of the following answers: 

x Yes 
x No 

 

How many siblings do you have? 

Please enter your answers below: 

x Younger siblings 
x Older siblings 

 

Please indicate with which hand you prefer to perform the following activities: 

 

 Always 
right 

Mostly right Both hands Mostly left Always lfet 

Write      
Throw      

, changed your place of residence?
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Tooth brushing      
Holding a spoon      

 

What languages do you speak at home? (multiple answers are possible) 

Please select all applicable answers: 

x German 
x Another language 

 

What is the highest professional qualification of your parents? (Please indicate the highest 
educational level in each case) 

 

 Father Mother 
University   
University of applied science   
Technical college (former GDR)   
Technician or master craftsman examination   
Apprenticeship   
No educational background   
Unknown   

 

How do you finance yourself? (multiple answers are possible) 

Please select all applicable answers: 

x My parents support me financially 
x BAföG 
x Scholarship 
x Job as student assistant (Hiwi) at the university 
x Job as a tutor at the university 
x Job outside the university 
x Other 

 
Questions about the school 

School education 

At which type of school did you get your university entrance qualification? 

Please select only one of the following answers: 

x Grammar School 
x Comprehensive school 
x Vocational school 
x Other 
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After how many school years did you receive your university entrance qualification? 

Please select only one of the following answers: 

x After less than 12 years 
x After 12 years 
x After 13 years 
x After more than 13 years 

 

In which federal state did you acquire your university entrance qualification? 

Please select only one of the following answers: 

x Baden-Württemberg 
x Bavaria 
x Berlin 
x Brandenburg 
x Bremen 
x Hamburg 
x Hesse 
x Mecklenburg-Western Pomerania 
x Lower Saxony 
x North Rhine-Westphalia 
x Rhineland-Palatinate 
x Saarland 
x Saxony 
x Saxony-Anhalt 
x Schleswig-Holstein 
x Thuringia 
x Other 

 

Which of the following subjects did you take at school in the upper school and what 
grades (between 1.0 and 4.0) did you have in these subjects in your Abitur certificate? 

Please select a maximum of 4 answers. 

Please select the appropriate items and write a comment: 

x German 
x English 
x Mathematics 
x Physics 
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Which of these subjects did you take as advanced courses at school? 

Please select all applicable answers: 

x German 
x English 
x Math 
x Physics 
x None of these subjects 

 

Questions on the choice of study subject 

I chose my present course of study because... 

On a scale from 1 (completely correct) to 6 (completely incorrect) please indicate the 
accuracy of the following statements.  

I chose my present course of study because... 

x it particularly interested me and I wanted to 
x it corresponds to my inclinations and talents. 
x as a graduate of this course of studies I expect particularly good earning and 

employment opportunities. 
x I didn't know what else to do 
x I was influenced in my decision by my family / friends 

 

Is your current course of study your dream study? 

Please select only one of the following answers: 

x Yes 
x No 

 

On a scale from 1 (completely sure) to 5 (completely unsure) please indicate the 
accuracy of the following statements.  

x How confident are you in your choice of study? 
x How satisfied are you today with your choice of study? 
x How certain are you that you will complete your studies? 
x How certain are you that you will complete your studies at Goethe University? 

 

Did you do one or more of the following activities before starting your current studies? 

Please select all applicable answers: 

x Internship related to your field of study  

this university?
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x Internship not related to the field of study 
x Training 
x Completed studies 
x Aborted studies 
x Voluntary social year, German Armed Forces, Federal Voluntary Service etc. 
x Other: 

 

Questions about studies 

Study 

How many semesters do you estimate you will need in total until you graduate from 
your current course? 

Only numbers may be entered in this field. 

Please enter your answer here: 

 

What are your plans for the time after graduation from your current course of study? 

Please select only one of the following answers: 

x Begin a further study (e.g. Master's degree) 
x go to work 
x Other 

 

Based on my grade point average, I expect to belong to... 

Please select only one of the following answers: 

x ... the top 10% of my class. 
x ... the top 11-20% of my year. 
x ... the top 21 - 30% of my year of study. 
x ... the top 31 - 40% of my year of study. 
x ... the top 41 - 50% of my year of study. 
x ... the top 51 - 60% of my year of study. 
x ... the top 61 - 70% of my year of study. 
x ... the top 71 - 80% of my year of study. 
x ... the top 81 - 90% of my year of study. 
x ... the top 90 - 100% of my year of study. 

 

How important is it to you to maintain your grade point average in your studies or even 
improve? 

Please select only one of the following answers: 
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x Very important 
x Pretty important 
x Indifferent 
x Rather unimportant 
x Very unimportant 

How many hours a week do you think you should invest in your studies? 

Only numbers may be entered in this field. 

Please enter your answer here: 

 

How many hours do you think you will actually invest in your studies each week? 

Only numbers may be entered in this field. 

Please enter your answer here: 

 

How many hours a week do you currently invest in your studies? 

Only numbers may be entered in this field. 

Please enter your answer here: 

 

Do you believe that your future earnings will depend on your final grade in your 
studies? 

Please select only one of the following answers: 

x Completely correct 
x Fully applicable 
x Applies 
x Applies less 
x Not applicable 

 

Risk, Impatience, TC & Narcissism 

We would like to ask you to answer the following truthfully. There are no "real" or "wrong 
answers."  

How do you personally assess yourself? Are you generally a person willing to take risks 
or do you try to avoid risks? Please answer using the following scale, where the value 0 
means: "Not willing to take risks at all", and the value 10: "Very willing to take risks". 
With the values in between you can grade your assessment. Please select the appropriate 
answer: 

x 1 
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x 2 
x 3 
x 4 
x 5 
x 6 
x 7 

 

How do you personally assess yourself? Are you generally a person who is impatient or 
who is always very patient? 

Please answer using the following scale, where the value 0 means "very impatient" and the 
value 10 means "very patient". With the values in between you can grade your assessment. 
Please select the appropriate answer: 

x 1 
x 2 
x 3 
x 4 
x 5 
x 6 
x 7 
x 8 
x 9 
x 10 

To what extent do you agree with the following statement: "I'm a narcissist." (Note: A 
narcissist is selfish, self-centered, vain.)? Please answer using the following scale, where 
a value of 1 means "do not agree at all" and a value of 7 means "agree completely". 
With the values in between you can grade your assessment. Please select the appropriate 
answer:  

x 1 
x 2 
x 3 
x 4 
x 5 
x 6 
x 7 

How would you assess yourself in the context of the following statements? Please answer 
using the following scale, where 1 means "do not agree at all" and 7 means "agree 
completely". The values in between allow you to grade your assessment. Please select 
the appropriate answer: 

x I like to find myself in situations where I am in competition with others. 
x It is important to me to be better than others. 
x I think it is important to win at work and in games. 
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x I exert more effort when competing with others. 

 

Big 5 and Grit 

In the list below are different characteristics a person can have. It is likely that some 
characteristics will apply fully to you personally and others not at all. For others, you may be 
undecided. Please answer using the following scale: 

A score of one means you are not applicable at all. 

The value 7 means: fully applicable. 

With the values between 1 and 7 you can grade your opinion. 

 

I am someone who... 

Please select the appropriate answer: 

x works thoroughly 
x is communicative, talkative 
x is sometimes a little rough on others 
x is original, brings in new ideas 
x is often worried 
x pardon 
x is rather lazy 
x can come out of itself, 
x is sociable 
x appreciates artistic, aesthetic experiences 
x easily nervous 
x Tasks completed effectively and efficiently 
x is reserved 
x is considerate and friendly with others 
x has a vivid imagination, imagination 
x is relaxed, can handle stress well 

To what extent do the following statements apply to you personally? There are no right or 
wrong answers here. Please select only one answer in each line.  

Please answer using the following scale: 

A value of one means they do not apply at all. 

The value 5 means: completely correct. 
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With the values between 1 and 5 you can grade your opinion. Please select only one 
answer in each line. 

x I often set myself a goal, but then decide later to pursue a different goal. 
x New ideas and projects sometimes keep me away from previous ones. 
x I am interested in something new every few months. 
x My interests change from year to year. 
x I was once obsessed with a project or idea for a short time, but later I lost interest. 
x I find it difficult to stay focused on projects if they last several months. 
x I have worked for years towards a goal that I have achieved. 
x To overcome important challenges, I also overcome setbacks. 
x Everything that I start, I also finish. 
x I am not discouraged by setbacks. 
x I am a hard working person. 
x I am a diligent person. 

 

Trust and Reciprocity 

For the following decision situation, another survey participant will be assigned to you 
randomly. You and this other person make different decisions, which then result in 
your payout and the payout of the other person. At the beginning you and the other 
person will each receive 10 Euros from us. You have the following two options to choose 
from: 

Option A: You keep your 10 Euros. 

Option B: You give your 10 euros to the other person. The 10 Euros are doubled, i.e. the 
other person receives 20 Euros.  

The other person also has these two options to choose from. Hence, there are four 
possible outcomes, depending on how you and the other person decide: 

If you and the other person both choose option A, you will both end up with 10 Euros 
each. 

If you and the other person both choose option B, both of you will each have 20 euros. 

If you choose option A and the other person chooses option B, you will have 30 euros 
and the other person 0 euros. And vice versa, if you choose option B and the other 
person chooses option A, you have 0 euros and the other person has 30 euros. In the 
following two situations, please decide whether you would rather choose option A or 
option B. The situations differ in whether you or the other person makes their decision 
first. 

 

Situation 1: You decide first and the other person is informed of your decision. 

Which option do you choose? 
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x A 
x B 

Situation 2: The other person makes their decision first, and you are informed of their 
decision. 

Which option do you choose if the other person has chosen option A? 

x A 
x B 

Which option do you choose if the other person has chosen option B? 

x A 
x B 

Figure 11 Translation of field study question items.

Electronic copy available at: https://ssrn.com/abstract=3675313



48

Table 3

Share of reciprocal examples among female observations in training set
Performance measure 0% 5% 10% 15% 20% 25% 30% 35% 40% 45% 50%
Accuracy 0.84 0.82 0.81 0.76 0.76 0.79 0.75 0.74 0.76 0.76 0.75

Precision (Reciprocal) 0.71 0.71 0.74 0.67 0.71 0.74 0.69 0.72 0.76 0.77 0.77

Precision (Selfish) 0.88 0.85 0.83 0.80 0.78 0.80 0.78 0.76 0.77 0.75 0.73

Recall (Reciprocal) 0.61 0.59 0.57 0.57 0.55 0.62 0.63 0.64 0.70 0.71 0.73

Recall (Selfish) 0.91 0.91 0.91 0.86 0.87 0.87 0.82 0.82 0.82 0.80 0.77

We how algorithmic performance metrics conditional on the share of reciprocal examples among female observa-

tions in the training set. We show precision and recall metrics for both types of predictions.

Algorithm 2: Sequence of simulation exercises with continued learning
Result: Game outcomes and utilities in sequential prisoners’ dilemma games
Cleaning of raw data;
while counter ≤ 10 do

1. Random partition of cleaned data - 25% population set, 75% training set;
2. Preparation of training set for training of ML algorithm;
3. Training, validation, testing of ML algorithm on training set;
4. Estimation of individual utility functions for subjects in population set;
while counter ≤ 100 do

5. Random draw of 50% of individuals in population set;
6. Random partition of selected individuals in trustors and trustees;
7. Random matching of trustors and trustees in pairs of two;
8. Matching AI system trustor decisions with trustees conditional choices, determination of game outcomes

and utilities.;
9. Compute diverse performance metrics;
10. Append training data by trustees whose matched trustor cooperated;
11. Retrain the AI system’s ML algorithm on the appended training set

end
end
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Figure 12

Note. We depict the trustor utility under continued learning. Conditional on the degree of algorithmic discrimination

against women. From left to right panels show results for (a) the entire sample of games, (b) the subsample of games

with female trustees, and (c) the subsample of games with male trustees.

Figure 13

Note. We depict the frequencies with which certain outcomes occur under continued learning. Conditional on the

degree of algorithmic discrimination against women. From left to right panels show results for (a) the entire sample

of games, (b) the subsample of games with female trustees, and (c) the subsample of games with male trustees.
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Figure 14

Note. We depict the trustee utility under continued learning. Conditional on the degree of algorithmic discrimination

against women. From left to right panels show results for (a) the entire sample of games, (b) the subsample of games

with female trustees, and (c) the subsample of games with male trustees.

Figure 15

Note. We depict population welfare under continued learning. Conditional on the degree of algorithmic discrimination

against women. From left to right panels show results for (a) the entire sample of games, (b) the subsample of games

with female trustees, and (c) the subsample of games with male trustees.
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