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Non-Technical Summary

Investors face different types of risks when they invest in the stock market. There are so-called diffusive
risks, which make economic quantities fluctuate usually only to a moderate degree over future time
periods. The second important category of risk is called jump risk, and it describes the risk that economic
fundamentals adversely change by large amounts over very short periods of time (theoretically even
instantaneously). Jumps occur only rather infrequently, so it is empirically very hard to estimate the
likelihood that such a jump actually occurs. Given this, it is natural to assume that investors may actually
disagree about this likelihood, with optimists considering them less probable than pessimists.

When investors disagree about a parameter which is important for the dynamics of the economy, they
will trade securities with each other such that their respective portfolio holdings reflect their beliefs. In
case it is possible for investors to create any possible exposure to fundamentals in their portfolio (e.g.,
by trading different types of insurance contracts with each other), the market is complete, otherwise, it
is incomplete. In our paper, we show that this characteristic of a financial market is a potentially important
determinant for the investors’ speculative behavior, for whether a given investor can retain a non-
negligible share of consumption in the long run ("survival”), and for the dynamics of asset prices.

We consider two models. In the first one, output (i.e., aggregate consumption) is subject to jumps, while
in the second one it is the expected growth rate of output, which can decrease substantially over a very
short horizon. In the first model, the claim to aggregate consumption (basically the same as the
aggregate stock market) has a very large exposure to jump risk, so that investors can trade this
important source of risk (almost) irrespective of whether explicit insurance contracts are available. Even
in the case when the market is technically incomplete because investors cannot trade insurance
contracts, the implications are not very strong. In the second model, this is no longer true, the fact that
jump risk is no longer really tradeable has important consequences for investor survival and speculative
behavior. In both models, however, the fact of whether the market is complete or incomplete does not
have much relevance for the dynamics of asset prices.
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Abstract

We study the effects of market incompleteness on speculation, investor survival,
and asset pricing moments, when investors disagree about the likelihood of jumps
and have recursive preferences. We consider two models. In a model with jumps
in aggregate consumption, incompleteness barely matters, since the consump-
tion claim resembles an insurance product against jump risk and effectively re-
produces approximate spanning. In a long-run risk model with jumps in the
long-run growth rate, market incompleteness affects speculation, and investor
survival. Jump and diffusive risks are more balanced regarding their importance

and, therefore, the consumption claim cannot reproduce approximate spanning.
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I. Introduction

The probability of rare disasters is by definition hard to estimate. Therefore, investors
likely disagree about it, which creates an incentive to trade to engage in speculation. In
addition, investors cannot insure against disasters. For example, Bates (2008) shows that
the insurance market against “large” risks suffers from substantial under-capitalization, i.e.,
there are not enough insurers willing to offer, e.g., deep-out-of-the-money put options so
that the market potentially can be incomplete. Therefore, we ask in this paper: If two in-
vestors trade with each other because they disagree about the likelihood of jumps, under
what circumstances does market incompleteness or, more precisely, spanning incompleteness

matter?

Dieckmann (2011) argues that in a model with two log utility investors who disagree
about the likelihood of jumps in aggregate consumption, the “risk premium increases upon
market completion, and the increase can be as large as 30%” (p. 460), i.e., it increases to
1.06% from 0.82%. Nevertheless, looking at an absolute difference of 0.24%, market incom-
pleteness does not seem to matter that much. We investigate this issue in the context of two
models: (1) a model with jumps in aggregate consumption, and (2) a long-run risk model
with jumps in the long-run growth rate. In each model, there are two investors with re-
cursive preferences, an optimist and a pessimist with a low and a high subjective disaster
probability, respectively. We solve each model for the equilibrium on the complete and the
incomplete market. Completeness means that the consumption claim, the risk-free asset,
and all necessary insurance contracts needed to trade jump risk independent from diffusion
risk are available to the investors. When the market is incomplete, we assume that the in-
surance products are no longer available. By comparing the results, we see whether market
incompleteness matters for the speculation between investors (i.e., the local consumption
share dynamics), investor survival (i.e., the long-term evolution of the consumption share

over time), and aggregate asset pricing moments as the risk-free rate, the risk premium, and



the return volatility.!

In our calibrated examples, we find that the relative importance of jump and diffusive
risks is a key determinant for differences between complete and incomplete markets. In model
(1), jump risk is the dominant source of risk and market incompleteness barely matters,
irrespective of whether we look at speculation, investor survival, or asset pricing moments.
On the complete and the incomplete market, the investors speculate against each other using
jump risk, and depending on the true jump intensity, either of the two agents or both survive.
In model (2), jump and diffusive risks are more balanced regarding their importance and
here market incompleteness matters with respect to speculation and investor survival, but
not regarding asset pricing moments. On the complete market, the agents almost exclusively
share diffusion risk and use jump risk to speculate. Depending on the true measure, the
optimist, the pessimist, or both survive. On the incomplete market, however, the investors
trade mainly diffusive risks, and irrespective of the true jump intensity, the pessimist is

driven out of the market in the long run.

The first step to understanding our findings regarding speculation is that the relative
importance of the different sources of risk will be reflected in the exposures of the consump-
tion claim. In model (1), a jump leads to a 40% drop in aggregate consumption growth,
while the diffusive consumption volatility is 2%. Thus, jump risk is substantially more im-
portant than diffusive risk, so that the consumption claim loads almost exclusively on jump
risk. Hence, the consumption claim is rather similar to the jump insurance product. So even
when the market is incomplete, this dominant source of risk remains separately tradable
via the consumption claim, and, loosely speaking, incompleteness represents a non-binding
restriction. As a consequence, market incompleteness barely matters for speculation and we

find virtually no differences regarding investor survival between the two market structures.

In model (2), the volatility of aggregate consumption is 2.52%, the volatility of the

'With homogeneous preferences and beliefs, the agents share risks perfectly. Introducing disagreement

causes the investors to take speculative bets against each other.



long-run growth rate is 1.14%, and a jump leads to a 3% drop in the expected growth rate.
Hence, jump and diffusive risks are more balanced with respect to their importance. This is
reflected in the exposures of the consumption claim, so that the two types of risk can only
be traded jointly via this asset. On the incomplete market, an investor cannot adjust her
jump risk exposure without simultaneously affecting her exposure to the diffusive risks, so
that incompleteness represents a binding restriction. Selling the consumption claim is the
pessimist’s only way to reduce her jump exposure, which also implies less diffusive exposure.
This has two effects. First, by holding a smaller position in this asset than the optimist,
the pessimist misses out on its excess returns. Second, with respect to the consumption-
savings decision, saving becomes more attractive for the optimist and less attractive for the
pessimist, and in total the optimist ends up saving more than the pessimist. Taking the two

effects together, the pessimist is driven out of the market over time.

From a technical perspective, we use a solution method that is innovative in a number
of ways. First, we solve the individual investors’ optimization problems, which are linked
through market clearing conditions, instead of applying the social planner approach. For-
mally, this amounts to solving a system of coupled partial differential equations for the
individual investors’ wealth-consumption ratios. We then extend this approach to the in-
complete market case, where the model solution has to satisfy additional partial differential
equations and constraints related to the investors’ subjective price-cash flow ratios as well as
their individual exposures to the risk factors. Compared to, e.g., the technique suggested by
Collin-Dufresne, Lochstoer, and Johannes (2013, 2017), our approach is more flexible, since
it can be applied to problems featuring incomplete markets. Furthermore, an advantage rel-
ative to the solution method developed by Dumas and Lyasoff (2012) is that our method
does not require the discretization of continuous-time stochastic processes and also works

for infinite-horizon problems.

Our paper contributes to three strands of the literature. The first one deals with natural

selection in financial markets, dating back to Alchian (1950) and Friedman (1953). The



question of investor survival has been addressed on a complete market in a general equilibrium
framework with CRRA investors, for instance, by Sandroni (2000), Blume and Easley (2006),
and Yan (2008). For i.i.d. consumption growth and time-additive utility, it can be shown
analytically that the investor whose belief is further away from the true measure will lose
all her consumption in the long run and disappear from the economy. However, Borovicka
(2018) shows that this is not necessarily true anymore in models with recursive utility. Two
investors with identical EZ preferences, who differ with respect to their beliefs concerning
the expected growth rate of consumption, can both have non-zero expected consumption
shares in the long run, even when the beliefs of one of them represent the true model. It may
even happen that only the investor with the “worse” belief survives in the long-run. In our
two examples, the complete market results show that, depending on the true jump intensity,

either of two agents or both can survive, in line with Borovicka (2018).

The second strand of the literature addresses the question of investor survival on an
incomplete market. The two models we look at in this paper are quite different from the
ones studied in the related literature by Sandroni (2005) and Blume and Easley (2006). In
particular, our model (2) is the first to combine heterogeneous investors in a long-run risk
economy with incomplete markets. Sandroni (2005) argues that the agent with the more
accurate beliefs will dominate the economy, as on the complete market. In contrast to this,
Blume and Easley (2006) find under the assumption of time-separable preferences that the
market selection hypothesis may fail, if the market is incomplete.? In this paper, we study
market incompleteness by means of two examples. In model (1), we obtain the same result
as on the complete market, i.e., depending on how we set the true jump intensity, either of

two agents or both can survive. In model (2), however, the pessimist is driven out of the

2Schneider (2018) takes a different approach. Starting from observable bid ask spreads for S&P500
options, he constructs a model with an optimist, a pessimist, and a pragmatist who have different views on
the distribution of the S&P500 and trade option portfolios and forwards. In his setup, the pessimist is the

most successful agent, while the optimist loses consistently.



market, irrespective of the true jump intensity and even if her beliefs are correct. Although
our framework is different from theirs, our findings support the view offered by Blume and

Easley (2006) substantially more than the conclusions drawn by Sandroni (2005).

The third strand of the literature studies asset pricing moments on an incomplete
market and can be roughly sorted into two categories.®> On the one hand, there are papers like
Levine and Zame (2002) or Dieckmann (2011) arguing that incompleteness matters. Levine
and Zame (2002) point out that “in the presence of aggregate risk, market incompleteness
alone may have substantial effects” (p. 1807). However, they do not provide any quantitative
results. Dieckmann (2011) is the paper closest to ours in the sense that he studies a model
very similar to our model (1). He considers the case of jumps in aggregate consumption,
and two investors with log preferences who disagree about their likelihood. In his model, the
equity premium (conditional on no disasters) on the complete market is up to 30% higher
than on the incomplete market. However, due to log utility, the level of both premia as well
as the difference between them are fairly small in absolute terms and the latter amounts to
24 bps. On the other hand, papers as Telmer (1993), Heaton and Lucas (1996), or Kriiger
and Lustig (2010) indicate that market incompleteness does not have a significant impact
on asset pricing moments. In the two models we look at, it seems difficult to conclude
that incompleteness matters significantly for standard asset pricing moments, irrespective of
whether we look at the risk-free rate, the risk premium, or the return volatility, be it locally

or on the basis of a long time series of simulated data.

The remainder of the paper consists of three parts. In Sections II and III, we apply the

method described in Appendix A and check when and how market incompleteness matters

3There is a large literature on models with heterogeneous agents matching aggregate asset pricing mo-
ments on the complete market. Examples focussing on CRRA utility include Basak (2005), and Chen, Joslin,
and Tran (2012), while Garleanu and Panageas (2015), Chabakauri (2015), and Collin-Dufresne, Lochstoer,
and Johannes (2017) use recursive preferences. Since our focus is on market incompleteness, we do not

contribute to this literature.



in the two types of models mentioned above. Section IV concludes.

IT. Model (1): Jumps in aggregate consumption

A. Model setup

4

We consider two investors with identical recursive preferences.® ( is the subjective

time preference rate, 7 is the coefficient of relative risk aversion, 1) denotes the elasticity

of intertemporal substitution (EIS), and § = 11 —

F. In the following, we assume v > 1 and

v > 1, which implies v > +, 8 < 0, and that both investors exhibit a preference for early

1
w7

resolution of uncertainty.

Under the true probability measure P, aggregate consumption follows

dC;

t

where W, is a standard Brownian motion, and N, represents a Poisson process with constant
intensity A and constant jump size L. The investors agree on all parameters of the model
except the intensity of the Poisson process. This implies that under investor ¢’s subjective

probability measure P (i = 1,2) aggregate consumption evolves as

dcC;

o = ke dt +oc dWy + Lo dNy (A;) .-
t

Let investor 1 be the pessimistic investor, i.e., A\; > As.

Since it is central to our analysis whether the market is complete or not, we fix the set
of traded assets. On the complete market, the investors can trade the claim on aggregate

consumption, the money market account, and an insurance product linked to the jump

4See Epstein and Zin (1989) for the discrete-time setup and Duffie and Epstein (1992) for the extension

to continuous-time stochastic differential utility.



component N;, which investors use to speculate against each other.® The consumption claim
is in unit net supply, while the other two assets are in zero net supply. On the incomplete
market, the insurance product is not available.

All equilibrium quantities are functions of the pessimist’s share of aggregate consump-

. C . .
tion, wy = c;;t? as the endogenous state variable. Its dynamics are:

(1) dwy, = iy (W) dt + oy (wy) AWy + Ly, (wy) dNy (N)

where i, = iy (wy), 0y = 04 (wy), and L, = L, (w;) are determined in equilibrium. Solv-
ing the model for the equilibrium on the complete and the incomplete market follows the

procedure outlined in Appendix A, details are provided in Online Appendix I.

B. Quantitative analysis

1. Calibration

The parameters for the quantitative analysis of the first model are given in Table 1.
They are taken from Chen et al. (2012), except for the elasticity of intertemporal substitution
1, since Chen et al. (2012) use CRRA utility, while we want to employ recursive preferences.
The investor has a subjective discount rate of § = 0.03, a relative risk aversion of v = 4,
and an elasticity of intertemporal substitution of 1y = 1.5. The expected growth rate of
aggregate consumption, not including the compensation for the jump process, is o = 0.025.
The diffusive volatility is o = 0.02, and in case of a jump, aggregate consumption drops
by Lc = —0.40.° The investors disagree about the frequency of these consumption disasters.

The pessimist assumes an intensity of A\; = 0.017, i.e., on average one jump every 59 years,

5The cash flow of the insurance product, dI—It‘ = pydt + Ly dNy (X), is given exogenously, but its price-to-
cash flow ratio is determined in equilibrium.

6In Online Appendix II.C, we report additional results for Lo = —0.20.



while the optimist thinks there will be on average one jump only every 1,000 years, i.e.,
A2 = 0.001.7 Following Chen et al. (2012), we assume that the pessimist’s belief represents

the true model.?

[Insert Table 1 around here]

2. Consumption share dynamics

Since the two investors disagree about the likelihood of jumps in aggregate consump-
tion, they engage in risk sharing and speculation with each other. The dynamics of the
pessimist’s consumption share depicted in Figure 1 describe the equilibrium. Specifically,
the volatility o, and the jump size L, respectively, summarize how investors use diffusive
shocks and jumps to share risks and speculate.” The drift u,, in turn shows how investors
compensate each other. The portfolio weights in Figure 2 show the corresponding positions

in the consumption claim, the jump insurance product, and the money market account.

[Insert Figure 1 around here]

[Insert Figure 2 around here]

We start with the intuition on the complete market (grey line) in Figure 1. Since the
investors disagree about the likelihood of jumps, they speculate against each other using
jump risk. The optimist considers jumps to be less risky than the pessimist, hence she sells
the insurance product to the pessimist (see the top row of Figure 2). While the investors use
jump risk to speculate against each other, they share exclusively diffusive risk, i.e., L, > 0

and o, = 0. As a result of this transaction, the pessimist receives the insurance payoff in

"In Online Appendix I1.D, we present additional results when we decrease A; to 0.012, while keeping Ay
unchanged. After that we increase Ay to 0.06 and keep A; fixed.
8In Section II.B.5, we analyze how a variation in the true jump intensity affects the results.

9Risk sharing is characterized by o, = 0 for diffusive risk and L,, = 0 for jump risk.



case of a jump, but she also has to pay the insurance premium to the optimist in calm times,

e, fy < 0.

When the market is incomplete (black line), the investors still want to speculate using
jump risk, but since the insurance product is not available, the consumption claim is the only
instrument they can trade jump risk with. The pessimist sells the consumption claim (see the
bottom row of Figure 2), since she considers jumps to be more risky than the optimist. The
investors speculate so aggressively that the pessimist ends up selling the consumption claim
short when she is small (for w; < 0.25). Compared to the situation on the complete market,
the investors speculate on the incomplete market only slightly less on jump risk, and this
comes along with some speculation on diffusion risk, so that L,, > 0 and o,, < 0. The reason
is the risk structure of the consumption claim. Although the investors can no longer trade
jump risk separately through the insurance product, they can still trade the consumption
claim which mainly reflects jump risk and only a very small fraction of diffusion risk. This
also explains the small decrease in the plot for o, relative to the complete market. Finally, by
selling the consumption claim to the optimist, the pessimist misses out on the returns from

holding the consumption claim in calm times. Hence, Figure 1 shows that p,, is negative.

3. Investor survival

Given the local dynamics of the pessimist’s consumption share, its evolution over time
determines the investors’ long-run survival. Table 2 shows the results from a Monte Carlo
simulation of the pessimist’s consumption share over a period of 50, 100, 200, 500, 1,000,

and 10,000 years. The pessimist’s belief coincides with the true jump intensity.

[Insert Table 2 around here]

On the complete market, the pessimist looses a fraction of her consumption share at

the beginning, but even after 10,000 years she still survives. The pattern we observe in the



simulations corresponds to the discussion in Section II.B.2 regarding Figure 1. On average,
the pessimist’s consumption share falls, but a jump in aggregate consumption takes place
roughly every 59 years, and whenever it occurs, the payoff from the insurance product leads
to a significant increase in her consumption share. On the incomplete market, we observe in
Figure 1 that the increase in the pessimist’s consumption share following a jump, L, is a

bit smaller than on the complete market.

To understand what drives these results, we follow Borovicka (2018) who uses the

difference in expected log wealth growth rates under the true measure to analyze investor

survival:
lim § © 8, [dlog Vi ] — — B, [dlog Va,]
w0 | de 08 VT gy e 1008 Va
. 1 1
(2) = gjl_r%{(uvl — 50‘2/1 +log (1 + Ly,) /\) — (M\@ — 50\2/2 +log (1 + Lyy) )‘> }7

where py,, oy, and Ly, are the drift, volatility, and jump size of investor i’s individual
wealth process. If this expression is negative, the pessimist cannot survive. Moreover, the
above equation can be rewritten using the fact that the expected return on individual wealth
under investor ¢’s probability measure is equal to the risk-free rate plus the compensation

for diffusive shocks and jump risk:

1
77 i [dRY,] = vl +ovnl — Lvni N

_ f w Q —v;
v, = Tiy T OV — Ly, )‘i,t —e

where 7’1{ . denotes investor ¢’s risk-free rate, n}’ft/ her market prices of diffusion risk, and )\gt
her risk-neutral jump intensity, which is determined through )\% =\ (1 + 771]\2) from her

market price of jump risk 772]\@ Plugging this expression, which holds on the complete and on

10



the incomplete market, into Equation (2) yields

: 1 1
i}lgb {% E [dlog Vi) — at E[dlog VQt]}

, s oy 1 1
— EL%{(Q 2t ¢ 1,)_1_<5012,2—§0‘2/1)—1—[log(1—|—LVI)—log(1+LV2)]/\

®) o= a2 = (el — e 23)] |

The expression in curly brackets on the right-hand side of Equation (3) has four terms: (i)
the savings channel, e ™2t — e~¥; (ii) the speculative volatility channel, 1 0% — 107 ; (iii)
the speculative jump channel, [log (1 4+ Ly,) —log (1 + Ly,)] A, and; (iv) the “risk premium”

channel, (oy, Y — Ly, )\%) — (ov, ny; — Ly, )\gt) 10

The aggregate effect. Figure 3 presents the results.!! The savings channel is negative
and essentially the same for the two markets, implying that the pessimist consumes more out
of her wealth than the optimist. Since the optimist beliefs jumps will happen only once every
1,000 years, saving is more attractive for her than for the pessimist. The speculative volatility
channel is exactly zero on the complete and close to zero on the incomplete market. On the
complete market, this follows from the fact that both investors share diffusive risk. On the
incomplete market, they speculate by trading the consumption claim, but since this asset
reflects diffusive risk only to a small degree, the channel is not very important quantitatively.
The speculative jump channel is positive for the two market structures, since the pessimist
is less exposed to jump risk than the optimist. Through trading the insurance product on
the complete market or the consumption claim on the incomplete market, the investors take
speculative bets against each other. Hence, they end up with rather different exposures, so

that the resulting speculative jump channel is substantial.

10We put the term “risk premium” in quotes, since the expression given here does not coincide with the dif-

ference between the pessimist’s and the optimist’s actual risk premium given by (JVI n}’f’t — Ly, {)\%t - )\} > -
(s bt = Lo 36, =],

1Tn Online Appendix II, we present additional results breaking each channel down into its components.
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Finally, the “risk premium” channel is negative on both markets. This indicates that
the “risk premium” earned by the optimist is higher than the pessimist’s. The large impor-
tance of jump risk implies that the jump part of the “risk premium” is sizeable. On the
complete market, the two investors agree on the risk-neutral jump intensity, so this part of
the premium reflects the difference in jump exposures discussed previously. On the incom-
plete market, the investors’ will have different subjective risk-neutral jump intensities, but
the key point is that the huge importance of jump risk is still reflected in the consumption
claim. Therefore, this asset is fairly similar to the insurance product with respect to its sen-
sitivity to jump risk, and the investors are not materially restricted in terms of their options
to trade. Consequently, the differences between the investors’ risk-neutral jump intensities
are rather small, and the jump part of the “risk premium” channel is caused mainly by the
jump exposures, as on the complete market. While the pessimist wants to be less exposed to
jumps, the optimist gathers more jump exposure, and she gets compensated for that through

a higher “risk premium”.
[Insert Figure 3 around here]

Overall, Figure 3 shows that the optimist saves more, takes on a higher jump exposure
through trading, and, hence, earns a higher “risk premium” than the pessimist on both the
complete and the incomplete market. Therefore, the pessimist is driven out of the market,

in line with the results shown in Table 2.

Finally, we relate our findings on the complete market to Chen et al. (2012). They find
that “the agent with correct beliefs will dominate in the long run” (p. 2205), which is at odds
with our results. The reason is that Chen et al. rely on CRRA utility with v = 4, implying
P = %, while we use recursive preferences with the same v, but with ¢» = 1.5. The choice
of ¢ affects the savings behavior of the investors, and thus the savings channel. For ¢ < 1,
it is positive, i.e., the pessimist saves more than the optimist, and the savings channel is so

pronounced that it dominates the other three channels. For ¢ > 1, it is negative and smaller

12



in magnitude, as pointed out above.

4. Aggregate asset pricing moments

Before we can study aggregate asset pricing moments, we have to take a closer look
at aggregate wealth. It is given as V; = C; e”*, where v; = log (wy € 4+ (1 — wy) €"2t) is the
aggregate log wealth-consumption ratio. The total return (including consumption) R} on

aggregate wealth evolves as
(4) dR) = (wv+e™*) dt + oy dW; + Ly dN,,

where uy, oy, and Ly are the drift, volatility, and jump size of the aggregate wealth process.

Next, we take a look at the implications of market incompleteness on the following
three aggregate asset pricing moments: the risk-free rate which the investors have to agree
on, r{}t = r%c’t = 7"{ 12 the risk premium on the levered claim to aggregate consumption

calculated as

1

(5) EER, = ¢ (E E, [dR}] —r{) ,

with leverage factor ¢, and the return volatility of the levered claim to aggregate consumption

given as

(© RV, = 6yfobov+ A (Lv)”

The three quantities are shown in Figure 4. While there is virtually no difference
between the risk premia on the two markets, the risk-free rate is slightly higher on the

incomplete market, and, depending on w;, the return volatility on the incomplete can be

12The expression for the risk-free rate is given in Equation (I.10) in the Online Appendix.
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lower than, equal to, or higher than that on the complete market. Overall, however, the
differences appear too small to conclude that market incompleteness matters for aggregate

asset pricing moments in this model.

[Insert Figure 4 around here]

Finally, we compare our results for the complete market to Chen et al. (2012). They
only provide results for the risk premium, which is quantitatively similar to ours. In this
model, the impact of the intertemporal elasticity of substitution, ¢, on the risk premium is
negligible, but it is highly relevant for survival. Concerning the incomplete market case, the
paper by Dieckmann (2011) is closest to ours.'® In terms of aggregate asset pricing moments,
he focuses on the risk premium. In an economy with two log utility investors, he finds that
the risk premium (conditional on no jump) on the complete market can be up to 30% higher
than on the incomplete market. However, due to log preferences, the level of the risk premium
in the two markets as well as the difference between them are fairly small in absolute terms,
with the difference amounting to only roughly 24 bps. The fact that we find a similar result
with a more flexible preference specification indicates that the preference parameters might
not be of first-order importance when it comes to explaining differences between the risk

premiums on the complete and the incomplete market.

5. Varying the true jump intensity

The results presented so far are based on the assumption that the true measure coincides
with the pessimist’s belief, i.e., A = A\; = 0.017. Since the probability of rare disasters is by
definition hard to estimate, we study in this section, how varying the true jump intensity

affects investor survival.'*

13In his model, a jump leads to 20% drop in aggregate consumption and the consumption volatility is 4%.
The pessimist beliefs jumps take place every 10 years and every 100 years according to the optimist.

14We look at the corresponding aggregate asset pricing moments in Online Appendix II.
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Table 3 shows the pessimist’s expected consumption share E [wy]| simulated T' years
into the future, for A varying between 0.01 and 0.10, i.e., for the range of individual beliefs
spanned by Dieckmann (2011) and Chen et al. (2012). Varying the true belief on the complete
market makes jumps more or less frequent, which affects the likelihood of a positive payoff
from the insurance product. Since the pessimist holds a long position in this asset, less
frequent jumps lead to a decrease in her consumption share, and the opposite is true, when

jumps become more frequent.
[Insert Table 3 around here]

Looking at the incomplete market, we find almost the same pattern. The fact that there
are only minor differences between the complete and the incomplete market is in line with
our results from Section I1.B.3. The consumption claim is rather similar to the insurance
product, and by trading the consumption claim the investors can take almost the same

positions as on the complete market.

III. Model (2): Long-run risk model with jumps in the long-run

growth rate

A. Model setup

As in Section II.A, we consider two investors with identical recursive preferences. Under
the true probability measure P, aggregate consumption C; and the stochastic component of

its expected growth rate X, follow a system of stochastic differential equations

dc,

Ft = (e + X,) dt + ol dW,,

t

dXt = —HXXtdt+U;(th+Ldet(>\),
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where W; = (W, W) is a two-dimensional standard Brownian motion, and N; represents
a non-compensated Poisson process with constant jump size Lxy < 0 and true constant
intensity A. With the exception of the jump component, this is the classical long-run risk
setup from Bansal and Yaron (2004) in continuous time. The volatility vectors are specified
as o, = (0.,0) and o = (0,0,), so that consumption and the long-run growth rate are
locally uncorrelated. The key feature of this model is that jumps represent disasters, which

do not occur in the consumption process itself, but in the state variable X;.

The investors agree on all parameters of the model except the intensity of the Poisson
process, i.e., roughly speaking, they disagree about the likelihood of a disaster in the growth
rate over the next time interval. This implies that under investor i’s subjective probability

measure P (i = 1,2) the stochastic growth rate evolves as

Hence, the investors also disagree on the expectation éEi [dX;] = —kx X; + Lx \;. Let

investor 1 be the pessimistic investor, i.e., Ay > Ao.

For parsimony, the expected growth rate X, is assumed to be observable as in Bansal
and Yaron (2004), while the jump intensity A is not. Specifically, it seems reasonable to
assume that the investors do not have perfect knowledge about A. In fact, it is basically
impossible for the agents to infer the unknown intensity exactly from observations of Xj.
Especially for low values of the true intensity, as they are commonly used in the literature,

the uncertainty around estimates even from long samples can be rather large.!®

When the market is complete, the investors can trade the claim on aggregate consump-

tion, the money market account, and two insurance products linked to the Brownian motion

15With an unobservable parameter, one could consider adding learning to the model. However, since our

focus is on the implications of market incompleteness, we require an otherwise parsimonious setting.
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WX and the jump component Ny, respectively.' The consumption claim is in unit net sup-
ply, while the other three assets are in zero net supply. When the market is incomplete, the
insurance products are not available.!”

All equilibrium quantities are functions of the pessimist’s relative share in aggregate

consumption w; = %t and the expected growth rate X;. Similar to Equation (1), the dy-

namics of the consumption share can be written as a jump-diffusion process
(7) dwt = MUy (wt, Xt) dt + Ow (wt, Xt)/ th + Lw (U)t, Xt) dNt ()\) s

where the coefficient functions i, = i, (Wi, Xy), 0w = 0w (wy, Xy), and Ly, = Ly, (wy, X;)
are determined in equilibrium. Solving the model for the equilibrium on the complete and
the incomplete market follows the procedure outlined in Appendix A, details are provided

in Online Appendix III.

B. Quantitative analysis

1. Calibration

The calibration used in the quantitative analysis is presented in Table 4. The pa-
rameters represent standard values from the long-run risk literature, except for the mean
reversion speed ky = 0.1, i.e., shocks have a half-life of about 6.9 years, which is chosen to

match the equity premium.'® When a disaster occurs, expected consumption growth drops

160nline Appendix IV contains details on the insurance products. Their cash flow exposures to the risk
factors merely represent scaling factors, which do not have an impact on the equilibrium.

I"We have also analyzed the case of “intermediate incompleteness”, where only one of the insurance
products is available to the investors. These results typically lie between the cases of completeness and
market incompleteness presented in Section III.B below.

18When we follow Benzoni, Collin-Dufresne, and Goldstein (2011) and set kx = 0.2785, the results remain

qualitatively unchanged.
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by Lx = —0.03, which is about the same as in Benzoni et al. (2011).' The pessimistic
investor assumes an intensity of A\; = 0.02, i.e., on average one jump in X; every 50 years,
while the optimist thinks there will be on average one jump only every 1,000 years, i.e.,
A2 = 0.001.2° So the probabilities for rare events are about the same as in Chen et al. (2012).

Moreover, we assume that the pessimist’s belief represents the true model.?!

Equity is considered a claim on levered aggregate consumption with a leverage factor
of ¢ = 1.3. All the model results are shown for the case when the stochastic part of the

expected growth rate of consumption is at its long-run mean of —0.006.2>

[Insert Table 4 around here]

2. Consumption share dynamics

As in model (1), the disagreement between the investors causes them to trade with each
other. Figure 5 presents the dynamics of the pessimist’s consumption share, which summarize
how the investors share the different types of risks and speculate against each other. The
corresponding portfolio weights in the consumption claim, the diffusion insurance product

Z, the jump insurance product I, and the money market account are shown in Figure 6.

[Insert Figure 5 around here]

[Insert Figure 6 around here]

19When a jump occurs, these parameter values lead to respective wealth losses of up to 37% and 7%
for the optimist and the pessimist on the complete market. Although aggregate consumption itself remains
unchanged, the price of the claim on levered aggregate consumption falls by up to 9%.

20Tn Online Appendix VI.D, we present additional results when we decrease \; to 0.015, while keeping Ay
unchanged, and for the case when we increase Ay to 0.06 and keep \; fixed.

21Tn Section II1.B.5, we analyze how varying the true jump intensity affects the results.

22The long-run mean is computed as the value of X, for which J; E [dX;] = 0. This value is given by

’\Kﬂ and equal to —0.006 for our choice of parameters.
pe
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On the complete market (gray line), the mechanism is basically the same as for the
model with jumps in aggregate consumption discussed in Section II.B. The investors want
to speculate against each other because they disagree about the likelihood of jumps. The
optimist thinks these are less likely, and so she speculates on her belief by selling the insurance
product linked to those jumps to the pessimist (see the top row of Figure 6). The pessimist, in
turn, sells the diffusion insurance product to the optimist. Consequently, we observe almost
perfect risk sharing in diffusive risks, i.e., oy, ¢, 0 x =~ 0, and the investors speculate against
each other using jump risk, i.e., L,, > 0. As a result of this transaction, the pessimist receives
in case of a jump the insurance payoff from the optimist. Upon a jump, the pessimist’s
consumption share increases significantly implying that L, is positive and quantitatively
sizeable. However, in calm times, the pessimist has to pay the insurance premium to the

optimist. This leads to a drop in wy, so that u,, is negative.

On the incomplete market (black line), the investors can only trade the money market
account and the consumption claim. As before, the agents want to take speculative bets on
jump risk against each other based on their beliefs. Since the optimist considers jumps to
be less frequent than the pessimist, she buys the consumption claim from the pessimist (see
the bottom row of Figure 6). Holding a smaller fraction of the consumption claim affects
the pessimist in several ways. In case of a positive diffusion shock, the pessimist’s smaller
position in the consumption claim hurts her in relative terms and, thus, leads to a decrease
in her consumption share, i.e., o, ¢, 0, x < 0. Similarly, the pessimist is better protected
against a negative shock and, hence, is better off than the optimist after such a shock. In
case of a jump, which is negative by definition, the pessimist is less negatively affected than
the optimist who holds a larger fraction of the consumption claim. Therefore, w; goes up
slightly following a jump, i.e., L, > 0. Finally, reducing the position in the consumption

claim also implies that the pessimist earns less than the optimist in calm times, i.e., p,, < 0.

The results on the incomplete market here are strikingly different from those for the

case of a jump in aggregate consumption analyzed in Section II.B. In model (1), jump risk is
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substantially more important than diffusive risk, so that the consumption claim loads almost
exclusively on jump risk. Hence, the consumption claim resembles an insurance product
against jump risk and market incompleteness barely matters. In model (2), jump and diffusive
risks are more balanced regarding their importance. Hence, the consumption claim reflects
both types of risk so that they can only be traded jointly. Therefore, an investor cannot
speculate on jump risk without simultaneously speculating on diffusive shocks. The fact that
the consumption claim is mainly exposed to diffusive shocks and to a lesser degree to jump

risk, explains the magnitude of the effects we observe in Figure 5.

3. Investor survival

As in model (1), looking at the local consumption share dynamics motivates us to take
a look at the evolution of the pessimist’s consumption share over time. Table 5 presents
the pessimist’s expected consumption share simulated 7" years into the future under the as-
sumption that the true jump intensity A coincides with the pessimist’s belief A\ = 0.02. Over
time, the pessimist’s expected consumption share becomes smaller and smaller. Whether the
market is complete or incomplete does not impact the overall results on survival, it only has
an effect on the speed of extinction. Starting from a share of 50%, the pessimist’s expected
consumption decreases to about 37% of total output after 100 years on the complete and to
12% on the incomplete market, i.e., it decreases significantly faster on the latter. To under-
stand what drives these results, we rely on the same analysis as for model (1) and investigate

the four channels from Equation (3).

[Insert Table 5 around here]

The aggregate effect. Figure 7 presents the difference in expected log wealth growth
rates and its break down into the different channels for the two market structures. It shows

that, irrespective of whether the market is complete or incomplete, the optimist’s expected
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log wealth growth rate is higher than the pessimist’s, which is the reason why the pessimist
is driven out of the market as shown in Table 5. The optimist always ends up saving more,
and earning a higher “risk premium” than the pessimist. However, as stated above, when the
market is incomplete, the pessimist’s consumption share decreases faster than on the com-
plete market for two reasons. First, the two investors end up with jump exposures which are
rather similar implying that the speculative jump channel is close to zero, i.e., the pessimist
can no longer speculate on jump risk as much as on the complete market and this reduces her
chances of survival. Second, selling the consumption claim implies less compensation for the
pessimist. Therefore, the optimist’s excess return on wealth is higher than the pessimist’s.

Next, we discuss each channel in more detail.

[Insert Figure 7 around here]

The savings channel as defined in Equation (3) is the difference between the op-
timist’s and the pessimist’s respective consumption-wealth ratios, e V2t — e~"1¢.2 Figure 8

shows the individual consumption-wealth ratios and the resulting savings channel.

[Insert Figure 8 around here]

The complete market is presented in the left column. When the optimist (dashed line)
becomes small (i.e., when w; tends to 1), she consumes less and saves more. The analogous
logic (for w; going to 0) applies for the pessimist (dotted line). So if the threat of extinction
becomes more pronounced, each investor increases her savings rate to increase her future
wealth and, thus, to avoid extinction. However, this behavior is more pronounced for the
optimist than for the pessimist. Under the optimistic investor’s belief, jumps occur once

every 1,000 years, and this makes saving more attractive for her, in relative terms. For the

23Gince an investor can either save or consume, a decreasing consumption-wealth ratio translates into an
increasing savings-wealth ratio. In Online Appendix VI, we present additional results related to, e.g., the

aggregate and individual wealth-consumption ratios and their dependence on w; and X;.
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same reason, the dashed line is always located below the dotted one, implying that the
optimist consumes less and saves more out of her wealth than the pessimist, irrespective of
the consumption share. Consequently, the savings channel (solid line) which is the difference

between the dashed and the dotted line is negative across the whole range of wy.

For the incomplete market, we find that the optimist reacts in a similar fashion as on
the complete market. As she becomes smaller (w; close to 1), she saves more. In contrast,
the pessimist behaves strikingly different than on the complete market. Instead of trying to
save her way out of extinction, when she is faced with the threat of extinction, she actually
consumes more. So the fact that she is materially restricted in terms of her options to trade
makes her save less. When w; tends to zero, the expected growth rate of the pessimist’s
individual consumption shown by the dotted line on the right of Figure 9 is negative on the
incomplete market.?* As on the complete market, the optimist consumes less and saves more
than the pessimist, so that the savings channel is negative. However, the resulting solid line
is almost constant and does not have the same clear decreasing shape as on the complete

market.
[Insert Figure 9 around here]

The speculative volatility channel is given in Equation (3) as one half times the
difference between the optimist’s and the pessimist’s variance of individual wealth, % Oy, OV —
%a{/l oy, . Figure 10 shows the exposures of the investors’ respective wealth, oy, ¢ and oy, x,

as well as their difference.
[Insert Figure 10 around here]

The graphs in the top row representing the complete market confirm our finding from

above that the investors share diffusive risks almost perfectly. Since the optimist takes on

24The expected growth rate of investor i’s individual consumption under the true measure is given by
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more jump risk, her exposure to diffusive long-run growth rate shocks is lower than the
pessimist’s. Therefore, the speculative volatility channel is negative, but rather small in

magnitude.

Again, on the incomplete market, the pessimist sells the consumption claim to the
optimist to speculate on jump risk. Since the consumption claim is driven mainly by diffu-
sive shocks, we observe in the bottom row that the optimist’s exposure is higher than the

pessimist’s. Consequently, the speculative volatility channel is positive, but not very large.

The speculative jump channel captures the difference between the pessimist’s
and the optimist’s log jump sizes in individual wealth scaled by the true jump intensity,
[log (14 Ly,) —log (1 + Ly,)] A, as given in Equation (3). Figure 11 shows the investors’

exposures to jump risk, Ly,, and the difference between them.

[Insert Figure 11 around here]

On the complete market, the optimist sells the insurance product against jumps to the
pessimist and, thus, takes on more negative jump exposure. Interestingly, the pessimist does
not stop trading once she has reached an exposure of zero. When she is small enough, she
keeps on buying the insurance product to speculate on jump risk so that such a jump would
lead to a significant increase in her wealth.?> The optimist’s wealth drops in this case, but she
thinks the event can happen only once every 1,000 years. Consequently, she ends up with a
more negative exposure to jump risk than the pessimist, implying that the speculative jump

channel is positive and large.

On the incomplete market, the picture is different. By trading the consumption claim
which represents jump risk only to a small degree the investors still speculate. However, due
to the restricted set of trading instruments, it is impossible for the pessimist to obtain an

exposure larger or equal to zero. The optimist will have a more negative exposure again so

25When wy is close to zero, this behavior could be described as “gambling for resurrection.”
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that the speculative jump channel is still positive. The difference between the two investors

is fairly small, however, and much less pronounced than on the complete market.

The “risk premium” channel is defined in Equation (3) as (o¥, 01 — Ly, )\%) -
(a{/2 ngﬁ — Ly, )\%). The first term in parentheses is the actual diffusive risk premium, while
the second term has some similarities to the actual jump risk premium.?® Figure 12 presents
the break down of the “risk premium” channel into the parts due to diffusive shocks and

jump risk.
[Insert Figure 12 around here]

On the complete market, we solve for the equilibrium using the fact that the investors
have to agree on the different components of the pricing kernel. Since then 7y, = ni', = ¥
and /\(%t = )\gt = A2, the “risk premium” channel expression simplifies to (v, — ov,) 1}V —
(Ly, — Ly,) A\2.2" Hence, the differences between the two investors in the first two graphs
in the top row of Figure 12 are caused entirely by their different wealth exposures, i.e., by
the expressions in parentheses. Consequently, the pessimist earns the higher diffusive risk
premium, so that this part of the “risk premium” channel is positive, but rather small in
magnitude. For the jump part, on the other hand, the situation is reversed. Through selling
the insurance product, the optimist is taking over a lot of jump exposure from the pessimist
and earns a large “risk premium”, while for the pessimist this “risk premium” is smaller and
can become even negative when she starts speculating on jump risk. Therefore, the jump
part of the channel is negative and quite sizeable, so that it essentially represents the “risk

premium” channel.

When the market is incomplete, the investors still have to agree on the prices of all

traded assets, but no longer on the different components of the pricing kernel. The market

*The actual (unlevered) risk premium is given by of, 77;’}; — Ly, (/\gt - )\).
2"The market prices of risk nm and the risk-neutral jump intensities )\?t for i = 1,2 are shown in the top

row of Figure 13.
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prices of risk and the risk-neutral jump intensities from the equilibrium solution are presented
in the bottom row of Figure 13. We see that the optimist’s market price for diffusive shocks
is higher than the pessimist’s. Since the consumption claim reflects mostly diffusion risk,
this explains why the optimist is willing to buy it from the pessimist, thus ending up with a
higher exposure to this type of shocks. Consequently, the optimist earns the higher diffusive
risk premium, implying that, in contrast to the complete market result from Figure 12, this

part of the “risk premium” channel is negative.
[Insert Figure 13 around here]

Again, the situation is reversed for jump risk, which the pessimist considers to be
riskier than the optimist. Hence, the pessimist’s risk-neutral jump intensity is higher than
the optimist’s which is close to zero. This is the reason why the pessimist ends up with the
higher “jump risk premium”, although her individual wealth is exposed less to jump risk
(see the bottom row of Figure 11). Therefore, the jump part of the channel is positive, but
not very large. Since the investors trade mainly diffusive risk, it is the sizeable diffusive part,

which drives the negative “risk premium”.

4. Aggregate asset pricing moments

The expressions for the risk-free rate, the risk premium, and the return volatility are
given in Equation (I.10) in the Online Appendix, and in Equations (5) and (6). Figure 14
shows these three quantities. When the market is incomplete, we find that the risk-free rate
is lower, while the expected excess return and the return volatility are higher than in the
case of market completeness. However, the differences are fairly small. Hence, in this model,
it seems difficult to conclude that market incompleteness matters when it comes to aggregate

asset pricing moments.

[Insert Figure 14 around here]
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In terms of absolute magnitudes, the risk-free rate varies between 0.6% and 1.2%, and
the risk premium between 3.9% and 5%. Both quantities are consistent with the data, while
the return volatility of slightly more than 5% is too low. This is a commonly known problem
for long-run risk models which can be mitigated by introducing stochastic volatility a la
Bansal and Yaron (2004) or stochastic intensity as in Wachter (2013). However, since our
focus is on the implications of market incompleteness, we require an otherwise parsimonious

setting.2®

5. Varying the true jump intensity

In this section, we relax the assumption that the true jump intensity coincides with the
pessimist’s belief. As highlighted in Section III.A, all equilibrium quantities are functions of
two state variables, the pessimist’s consumption share w; and the expected growth rate X;.
Since X; follows an exogenous jump diffusion process with mean-reversion, and variations
in A\ have a straightforward impact on X;, we focus on the impact of A on the endogenous
state variable w;. Varying the true A does not affect the local dynamics of w, presented in
Figure 5, but it does affect its evolution over time. Again, we focus in the following on the

impact of A on investor survival.?

Table 6 shows the pessimist’s expected consumption share E [wy] for T years into
the future for A varying between 0.01 and 0.10, i.e., for the range for the individual beliefs

spanned by Dieckmann (2011) and Chen et al. (2012).%° For the complete market, we observe

28In the context of a long-run risk model without jumps, Pohl, Schmedders, and Wilms (2018) use the
insights from Borovicka (2018) and modify the calibration of Bansal and Yaron (2004) in a way which allows
them not only to generate a large equity premium, but also to explain further asset pricing puzzles.

29The corresponding asset pricing moments are shown in Online Appendix VI.

30For each A, we follow the procedure exemplified for A = 0.02 in Online Appendix V. First, we simulate
X; to obtain the quantiles for the long-run growth rate. Then, we solve the model numerically over the

resulting interval for X;.
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the expected result according to Borovicka (2018). By adjusting the true belief, jumps happen
more or less frequently, and this determines how often the pessimist receives a positive payoff
from the corresponding insurance product. When jumps under the true measure happen less
often than considered so far, i.e., when A < 0.02, the pessimist’s consumption share decreases
even faster over time. On the other hand, if jumps take place more often, i.e., A > 0.02, the
pessimist benefits from this and her consumption share tends to decrease more slowly. For
A > 0.05, this positive impact becomes even stronger, so that her consumption share increases
over time and, after 1,000 years, becomes larger than 0.5. Therefore, adjusting the true jump
intensity determines which of the two investors or whether both survive. The picture on the
incomplete market is strikingly different. Adjusting the true belief has an almost negligible
impact on the speed of extinction and the pessimist dies out after 500 years, irrespective of

whether the true intensity is 0.01 or 0.10.3!

[Insert Table 6 around here]

To understand the results for the two market structures, it is helpful to go back to the
interpretation of Equation (3). Changing the true A does not have an impact on the savings
channel, the speculative volatility channel, or the “risk premium” channel, but it of course
affects the speculative jump channel. Hence, as can be seen from Equation (3), increasing
or decreasing A\ corresponds to an upward or downward shift of the line representing the

speculative jump channel in Figure 7.

When the market is complete, the presence of the insurance products allows the in-
vestors to speculate on jump risk. Consequently, their jump exposures will be quite different.
Scaling this large difference in logs with varying \’s results in a sizeable shift for the spec-
ulative jump channel which then translates into a significant shift of the line representing
the difference in expected log wealth growth rates on the right in Figure 7. So if we choose

a “large enough” true jump intensity, the speculative jump channel will dominate the other

31If the true jump intensity is close to A = 1.00, the optimist will die out.
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three channels. In this case, the optimist still saves more and earns the higher “risk pre-
mium”, but there are “so many” jumps leading to insurance payoffs from the optimist to the

pessimist, that the pessimist ends up taking over the economy.

On the incomplete market, the investors can only rely on the consumption claim which
is much less exposed to jump risk than the corresponding insurance product. Consequently,
the differences between the investors are much smaller than on the complete market or even
close to zero. Multiplying this very small difference in logs by varying values for A will hardly
affect the speculative jump channel. Due to the restricted set of traded assets, the investors’
jump exposures are just “too similar” for the pessimist to benefit significantly from jumps.
Hence, in these scenarios in Table 6, the pessimist is still driven out of the market by the

optimist, because the optimist saves more and earns the higher “risk premium.”

IV. Conclusion

We study under what circumstances market incompleteness matters for two investors
with recursive preferences who disagree about the likelihood of jumps. We tackle this research
question using two models. With jumps in aggregate consumption, market incompleteness
barely matters, irrespective of whether we look at speculation, investor survival, or aggregate
asset pricing quantities like the risk-free rate, the risk premium, or the return volatility. In a
long-run risk model with jumps in the long-run growth rate, market incompleteness matters

with respect to speculation, and investor survival, but not regarding asset pricing moments.

To get the intuition behind our results, suppose, on the complete market, the investors
use a jump insurance product to speculate on the source of risk they disagree on. When
the market is incomplete, the insurance product is no longer available and the investors can
only trade the consumption claim and the money market account. Whether this spanning
incompleteness poses a material problem for the investors or not, depends on the similarity

between the exposures of the unavailable insurance product and the consumption claim. (i)
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When the two asset are very similar in terms of their exposures, the investors will not care
too much whether they can trade one or the other since both assets allow them to take
almost the same positions. Loosely speaking, in this case, spanning incompleteness becomes
a non-binding restriction and would thus have barely an impact. (ii)) When the two assets
are very different, in the sense that the insurance product loads exclusively on jump risk and
the consumption claim loads almost equally on jump risk and diffusion risk, the investors
cannot trade the two sources of risk separately, but only jointly in the relative composition
represented by the consumption claim. This makes it impossible for them to take basically
the same positions as on the complete market, i.e., incompleteness represents a binding

restriction and, hence, it matters.

The model with jumps in aggregate consumption in Section II turns out to be rather
similar to case (i), and thus market incompleteness barely matters. The long-run risk model
with jumps in the long-run growth rate in Section III is an example for case (ii) in which
incompleteness matters. Overall, our results highlight that the relative importance of jump
and diffusive risks is a key determinant regarding the differences between complete and
incomplete markets. In line with Blume and Easley (2006), we show that the market selection
hypothesis may indeed fail, if the market is incomplete, although our framework is different

from theirs.

The question whether market incompleteness is relevant or not, is discussed, e.g., by
Lustig and Verdelhan (2018) in an international context. Based on a preference based general
equilibrium analysis, we show under what circumstances incompleteness may or may not

matter for speculation, investor survival, and asset pricing moments.
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Appendix

A. The solution method

Solving asset pricing models with recursive utility investors is challenging, since the
wealth-consumption ratio affects the pricing kernel and thus prices, and vice versa. Com-
bining recursive utility with heterogeneous investors makes the problem even more difficult,
since the investors’ consumption share, i.e., how much each investor consumes relative to

aggregate consumption, represents an endogenous state variable.

In the literature, different approaches have been suggested to solve this problem. For
instance, Eraker and Shaliastovich (2008) combine a log-linear approximation a la Campbell
and Shiller (1988) with the guess that the log wealth-consumption ratio of the representative
investor is an affine function of the state variables. However, we want to treat the log wealth-
consumption ratios of the heterogeneous investors as a general, not necessarily affine function
of the consumption share. We determine the investors’ individual (log) wealth-consumption
ratios, v; and vy, numerically as solutions to two partial different equations (PDEs).3?

We specify all equilibrium quantities as functions of investor 1’s share of aggregate

consumption, w; = CL;, and assume its dynamics are given as

dwt = Uy (wt) dt + Ow (wt)/ th + Lw (wt) dNt ()\) s

where W, represents an n-dimensional Brownian motion, and /N, is a non-compensated Pois-
son process with constant intensity A. The coefficient functions fu, = puy, (W), 0w = 04 (wy),

and L,, = L, (w;) will be determined in equilibrium.

When the market is complete, the investors agree on the pricing kernel and its different

32Gimilar approaches have been used, e.g., by Benzoni et al. (2011) to solve a model with a representative
investor, long-run risk, stochastic volatility, and learning. The results in Online Appendix VI confirm that

the log wealth-consumption ratios of the investors are non-affine functions of the consumption share.
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components, i.e., on the risk-free rate r{’t = Tg’t, the market prices of diffusion risk nm =
'r]%, and on the risk-neutral jump intensity )\% = Agt, which is determined through )\% =
A (1 + nﬁ) from the market price of jump risk nﬂ We use these restrictions to solve for:
(i) 1 which follows from r{, = 73, (i) o,, which is obtained from n}";, = 5%}, and (iii) L.,
which is found using )\% = )\%. Technically, this amounts to a system of two PDEs, one for
each investor’s log wealth-consumption ratio, v;; and vy, where the solutions are connected
through p,,, 0., and L,,, i.e., each investor decides on how much to save and to consume so

that markets clear.

When the market is incomplete, the investors decide on their individual log wealth-
consumption ratios, vy, and vey, as before. However, determining ,,, 0., and L,, using the
different components of the pricing kernel no longer works, since the investors do not have
to agree on one pricing kernel. Nevertheless, the investors still have to agree on the prices
of all traded assets, i.e., on the risk-free rate, r{’t = r{t = rf , and on the log price-cash
flow ratio of the consumption claim, v1; = v2; = 14, which is calculated as the solution
of a PDE for each investor. Furthermore, on the incomplete market, the investors can only
take positions which are obtainable via holdings in a smaller set of traded assets.?® This
implies that the investors’ individual wealth and the return on their portfolios have to react
identically to diffusive risks and jumps, respectively. The resulting restrictions together with
the ones from the traded assets mentioned above give us fu,, 0., L., and also investor 1’s
portfolio weight for the claim on aggregate consumption, 7 ;. This leaves us with seven

equations for seven unknowns (vq¢, Vo, Vt, flw, Ow, Ly, and m ¢,), and these equations have

to be solved numerically.

33Tn contrast, market completeness implies that both investors can take individual wealth exposures with

respect to the different risk factors without any limitations.
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Table 1. Parameters for model (1)

The table reports the calibration for the model with jumps in aggregate consumption presented
in Section II. We assume that the pessimist’s belief A; represents the true measure \, except in
Section II.B.5 in which we vary the true jump intensity.

Relative risk aversion v 4
Elasticity of intertemporal substitution P 1.5
Subjective discount rate 15} 0.03
Expected growth rate of aggregate consumption

.. i Lo 0.025
(excluding jump compensation)
Volatility of aggregate consumption oc 0.02
Jump size in aggregate consumption L¢ -0.40
Leverage factor 0] 1.0
Jump intensity of the pessimistic investor 1 A1 0.017
Jump intensity of the optimistic investor 2 Ao 0.001
Leverage factor 10) 1.00
Drift of insurance product [ 115 -0.10
Jump size of insurance product [ Ly 0.40

Table 2. Investor survival in model (1)

The table shows for the model with jumps in aggregate consumption presented in Section II, the
pessimist’s expected consumption share E [wr] for T years into the future under the true measure
A = 0.017. The second (third) column gives the results on the complete (incomplete) market. The
pessimist’s expected consumption share is computed via a Monte Carlo simulation of the dynamics
of the consumption share shown in Equation (1) with a starting value of wy = 0.5. The coefficients
L, Ow, and L., are obtained by interpolating the grids for these quantities obtained as part of the
equilibrium solution. The parameters are given in Table 1.

T (years) Complete Incomplete
market market
50 0.3866 0.3767
100 0.3265 0.3096
200 0.2694 0.2402
500 0.2283 0.1759
1,000 0.2108 0.1513
10,000 0.2128 0.1418
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Table 4. Parameters for model (2)

The table reports the calibration for the long-run risk model with jumps in the long-run growth
rate presented in Section III. We assume that the pessimist’s belief A\; represents the true measure
A, except in Section II1.B.5 in which we vary the true jump intensity.

Relative risk aversion 7y 10
Elasticity intertemporal of substitution Y 1.5
Subjective discount rate B 0.02
Expected growth rate of aggregate consumption Jite; 0.02
Volatility of aggregate consumption oc 0.0252
Mean reversion speed of the long-run growth rate Kx 0.1
Volatility of the long-run growth rate o 0.0114
Jump size of the long-run growth rate Lx -0.03
Jump intensity of the pessimistic investor 1 A1 0.020
Jump intensity of the optimistic investor 2 Ao 0.001
Leverage factor 10) 1.3
Drift of insurance product Z Wz -0.10
Volatility of insurance product Z oz 0.001
Drift of insurance product [ 1% -0.10
Jump size of insurance product [ L; 0.01
T (years) Complete Incomplete

market market

50 0.4185 0.2598

100 0.3669 0.1188

200 0.3075 0.0216

500 0.2431 0.0001

1,000 0.2176 0.0000

10,000 0.2089 0.0000

Table 5. Investor survival in model (2)

The table shows for the long-run risk model with jumps in the long-run growth rate presented in
Section ITI, the pessimist’s expected consumption share E [wp] for T' years into the future under the
true measure A = 0.02. The second (third) column gives the results on the complete (incomplete)
market. The pessimist’s expected consumption share is computed via a Monte Carlo simulation of
the dynamics of the consumption share shown in Equation (7) with a starting value of wp = 0.5.
The coefficients p,, 0y, and L,, are obtained by interpolating the grids for these quantities obtained
as part of the equilibrium solution. The parameters are given in Table 4.
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Figure 8. Savings channel and consumption-wealth ratios in model (2)

The figure shows for the long-run risk model with jumps in the long-run growth rate presented in

Section III, the individual wealth-consumption ratios, eVt for ¢ = 1,2, and the resulting savings

channel, e™"2:*

— e V1t as defined in Equation (3). The dotted (dashed) line shows the pessimist’s

(optimist’s) individual consumption-wealth ratio, whereas the solid line indicates the savings chan-
nel. The graphs on the left (right) show the results for the complete (incomplete) market. All

quantities are determined under the true measure A = 0.02 and shown as functions of the pes-

simist’s consumption share w; with the long-run growth rate being fixed at X; = —0.0060. The

parameters are given in Table 4.
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Figure 9. Expected growth rate of individual consumption in model (2)

The figure shows for the long-run risk model with jumps in the long-run growth rate presented in

Section III, both investors’ expected growth rate of individual consumption, i.e., % Ei4 [dgz_ 1:} =

pc; + A Le,. The dotted (dashed) line represents the pessimist’s (optimist’s) expected consumption
growth. The graphs on the left (right) show the results for the complete (incomplete) market. All
quantities are determined under the true measure A = 0.02 and shown as functions of the pessimist’s
consumption share w; with the long-run growth rate being fixed at X; = —0.0060. The parameters
are given in Table 4.
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Figure 11. Speculative jump channel and exposures of individual wealth to jump
risk in model (2)

The figure depicts for the long-run risk model with jumps in the long-run growth rate presented in
Section III, (from left to right) each investor’s exposure of individual wealth to jumps in the long-
run growth rate (Ly, for ¢ = 1,2), and the resulting speculative jump channel, log (1 + Ly;) A —
log (1 + Ly,) A, as defined in Equation (3). The dotted (dashed) line represents results for the
pessimist (optimist), whereas the solid line gives those for the speculative jump channel. The top
(bottom) row refers to the complete (incomplete) market. All quantities are determined under the
true measure A = 0.02 and shown as functions of the pessimist’s consumption share w; with the
long-run growth rate being fixed at Xy = —0.0060. The parameters are given in Table 4.
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