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Abstract

Asset transaction prices sampled at high frequency are much staler than

one might expect in the sense that they frequently lack new updates showing

zero returns. In this paper, we propose a theoretical framework for formaliz-

ing this phenomenon. It hinges on the existence of a latent continuous-time

stochastic process pt valued in the open interval (0, 1), which represents at

any point in time the probability of the occurrence of a zero return. Using

a standard infill asymptotic design, we develop an inferential theory for non-

parametrically testing, the null hypothesis that pt is constant over one day.

Under the alternative, which encompasses a semimartingale model for pt,

we develop non-parametric inferential theory for the probability of staleness

that includes the estimation of various integrated functionals of pt and its

quadratic variation. Using a large dataset of stocks, we provide empirical ev-

idence that the null of the constant probability of staleness is fairly rejected.

We then show that the variability of pt is mainly driven by transaction volume

and is almost unaffected by bid-ask spread and realized volatility.
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1 Introduction

Traditional models in continuous-time finance entail that the price of an asset

traded in a frictionless market evolves as a semimartingale. Bandi et al. (2017)

provide empirical evidence against this hypothesis showing that even at moder-

ately high frequency asset prices do not update as frequently as expected under

the semimartingale assumption. Indeed, while under the standard semimartingale

hypothesis high-frequency returns should exceed an appropriately defined thresh-

old with large probability, often the converse is true; asset prices are stale in the

sense that they show a large incidence of zero or, more generally, “small” returns.

The inclusion of price staleness in the data-generating process results is pivotal

from both an economic and an econometric point of view. Bandi et al. (2017)

provide a micro-structural model of price formation (following the spirit of Kyle,

1985; Hasbrouck and Ho, 1987; Glosten and Milgrom, 1985) where the emergence

of zero returns is determined by the joint effect of asymmetric information, trans-

action costs, and delays in the incorporation of the information flow into the assets’

prices. However, being agnostic about the sources of zero returns, Kolokolov and

Renò (2017) show that neglecting price staleness leads to severe distortions of the

widely used power and multi-power estimators (Woerner, 2006; Barndorff-Nielsen

et al., 2006; Barndorff-Nielsen and Shephard, 2004; Lee and Mykland, 2008; Ca-

porin et al., 2014), which results in distorting traditional jump tests toward false

jump detection. Even though one may claim that such sluggish dynamics are the

spurious consequence of price discreteness, the empirical analysis in Bandi et al.

(2018) shows that this argument is falsified by data. On a large dataset of New

York Stock Exchange (NYSE)-listed stocks, they document that high-frequency

transaction prices show an excess of zero returns with respect to what would be

expected from price rounding alone. Most importantly, they prove that this ex-

cess of staleness, being strictly related to transaction volumes, bid-ask spreads, and

volatility, brings insightful economic information.

Therefore, the occurrence of zero returns is an economically meaningful feature

of the data-generating process of financial asset prices, which deserves detailed inves-

tigation. As the past financial econometric literature has successfully investigated

stochastic volatility (see, among many others, Hull and White, 1987; Scott, 1987;

Heston, 1993; Bates, 1996) by focusing on the erratic behavior of price paths, here

we look at the other side of the coin and ask the following research questions: Does

the probability of the occurrence of zero returns vary empirically on an intradaily

basis? In the affirmative case, what is an appropriate model for such variability

and what are the economic variates that mostly determine it?

As a starting point, we assume the existence of an efficient price process Y ,
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which we define as the asset price that would have been observed if the market

was perfectly liquid. In the presence of illiquidity frictions (such as trading costs or

asymmetric information), the trading activity is inhibited. The result is the random

occurrence of periods in which the observed price process stays constant, a situation

that in this paper we call

price staleness, following the nomenclature of Bandi et al. (2018). The greater

the magnitude of these frictions, the more probable and the more persistent the

staleness of the observed price. We model this frictional price dynamic following

the formalism introduced by Bandi et al. (2017) and Bandi et al. (2018). In contrast

to the standard assumption, for any partition 0 = t0,n < t1,n < . . . < tn,n = 1 of

the interval [0, 1] (e.g., a trading day), the efficient price process Y is not observed

in every point of the grid. Instead, the data are assumed to be generated by the

following recursive equation1:

X
(n)
tj,n = Ytj,n (1− Bj,n) +X

(n)
tj−1,n

Bj,n, j = 1, . . . , n, (1)

with the initial condition X
(n)
0 = Y

(n)
0 , where Ytj,n is the efficient price sampled in

the j-th element of the partition and where (Bj,n)j=1,...,n is a triangular array of

Bernoulli random variates such that for some (random) p∞ ∈ (0, 1).

1

n

n∑
j=1

Bj,n
p−→ p∞, as n→∞.

The recursive equation (1) implies that at each instant tj,n the observed price X
(n)
j∆n

may either coincide with the latent efficient price (Bj,n = 0) or may not update and

stay constant (Bj,n = 1), thus leading to a stale price. Our theoretical framework

hinges on the key assumption that this latter event occurs with probability E
[
ptj,n

]
,

where (pt)t∈[0,1] is a latent stochastic process valued in (0, 1). In this paper, we

develop an inferential theory for the dynamics of pt and consequently for the intra-

day dynamics of price staleness.

Our first result is to show that the intraday fraction of zeros, dubbed idle time2

in Bandi et al. (2017), is a consistent estimator of the integrated probability of

1The superscript (n) in the notation X
(n)
tj,n intends to highlight that the observed price process

is frequency-dependent. This means that even if tj,n = tj,n′ = t for n 6= n′ it typically occurs that:

X
(n)
t 6= X

(n′)
t .

2Bandi et al. (2017) define idle time as the daily percentage of log-returns that in absolute value
are smaller than a (asymptotically vanishing) threshold. Here, with a slight abuse of nomenclature,
we call idle time the same percentage with the threshold set exactly to zero.
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price staleness. Then, under the assumption that the process (pt)t∈[0,1] evolves as

a Brownian semimartingale, we derive a (stable) central limit theorem (CLT) for

idle time. To set-up a feasible confidence interval, we introduce a new economic

indicator, called (m)-idle time, and we derive its limiting properties when n →
∞. Next, we introduce the notion of local idle time and prove that 1) it is a

local estimator of pt, the stochastic probability of price staleness; 2) it allows the

construction of a non-parametric test able to distinguish between a constant and a

time-varying pt and 3) under the null of a Brownian semimartingale for pt, it allows

defining a consistent estimator of its integrated volatility.

We conclude the paper with an empirical application of the asymptotic theory

that sheds light new features of the price formation mechanisms and answer our

research questions on the dynamics of price staleness. First, using a large dataset of

NYSE-listed stocks, we prove that the non-parametric test largely rejects the null of

a constant probability of staleness. This means that zero returns are typically not

uniformly distributed during the day, and therefore periods of no trading activity

tend to cluster. Second, on the same dataset, we derive estimates of the integrated

volatility of pt for the sample stocks and with simple regressions prove how this

newly defined realized measure conditionally driven on the average pt by transaction

volumes and is almost unaffected by bid-ask spreads and price volatility.

The remainder of the paper is organized as follows. Section 2 introduces the

setting. Section 3 contains the limit results. Section 4 shows the finite sample

accuracy of our asymptotic theory using a Monte Carlo exercise and Section 5

presents the empirical results. Section 6 consists of the conclusion. All technical

proofs are confined to the Appendix.

2 The model

We work on a filtered probability space
(
Ω, (Ft)t≥0 ,P

)
that supports all stochastic

elements defined below. The structure of the filtration (Ft)t≥0 is quite technical and

is reported in Appendix A.1. We consider refining partitions of the time interval

[0, 1], Πn = {t0,n, . . . , tn,n}, with 0 = t0,n < t1,n < . . . < tn,n = 1, such that

Πn ⊆ Πn+1
3 where n is an increasing subsequence of N, such that the partitions

are equispaced. The value of a generic stochastic process X at a point tj,n of a

partition Πn are denoted with Xtj,n or, to avoid excessive subscripts, simply with

Xj,n. Because the partitions are equispaced, we have tj,n = j/n for j = 0, ..., n,

3The requirement that Πn ⊆ Πn+1 allows us to significantly reduce the proofs, and it is natural
for financial applications. For instance, one-minute partitioning of a trading day contains five-
minute partitioning.
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and we indicate the distance between two consecutive points of the partition with

∆n = 1/n.

As anticipated in the introduction, the key assumption of our theoretical frame-

work consists in the existence of a latent stochastic process that plays the role of

an “instantaneous probability of staleness”. What follows formalizes this idea.

Assumption 1. There exists an adapted Riemann-integrable continuous-time stochas-

tic process (pt)t∈[0,1], taking the values in (0, 1), such that the triangular array

(Bj,n)j=1,...,n of Bernoulli random variables that appears in equation (1) is given

by:

Bj,n
.
= I{Utj,n≤ptj,n}, j = 0, . . . , n, (2)

where I{·} is the indicator function and where (Ut)t∈[0,1] is a collection of uniformly

distributed random variables (independent of pt) satisfying Ut ⊥ Ut′, ∀t 6= t′, and

Ut ∈ Ft for all t.

Intuitively, the process pt determines at any point in time the probability of oc-

currence of a zero return in the sense that P [Bj,n = 1] = E [pj,n], that is (pt)t≥0 plays

the role of an instantaneous stochastic probability of price staleness in continuous-

time.

Notice that Assumption 1 preserves the compatibility relationship (cfr. Aı̈t-

Sahalia and Jacod, 2014, p. 211) over different sampling frequencies. Formally,

this property guarantees that if tj,n = j/n and tj′,n = j′/n are two equally spaced

partitions of [0, 1], with j = 1, . . . , n and j′ = 1, . . . , n′, then Bj,n = Bj′,n′ whenever

j/n = j′/n′.

Assumption 1 encompasses different specifications of (Bj,n)j=1,...,n. If pt = pF

∀t ∈ [0, 1], then the Bernoulli variates are i.i.d. with the probability of staleness

given by pF . Another (more sophisticated) specification is obtained when (pt)t∈[0,1]

is described by a Brownian semimartingale. As an illustrative example, Figure 1

plots a simulated path of the observed price process in equation (1) in which pt is

either constant (right panel) or a Brownian semimartingale (left panel). Although

the number of zero returns (signalled by a red cross) is the same, the two graphs

look rather different. In the i.i.d scenario, stale prices are uniformly distributed

over the trading day. However, in the semimartingale case, there is clustering of

lack of price adjustments.
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Figure 1: We give an example of a stale stock price where zero returns are signaled
by a red cross. The probability of observing a zero return either follows a semi-
martingale dynamic (left panel) or it is equal to a constant (right panel). In both
cases, the number of zeros is the same.

3 Asymptotic results

Here, we derive a (stable) CLT for the estimator of the fraction of zero returns

within one day. For a feasible CLT, we need first to add a technical assumption

regarding the dynamics of pt.

Assumption 2. The process (pt)t∈[0,1] is described by the following stochastic dif-

ferential equation (SDE):

pt = p0 +

∫ t

0

µs ds+

∫ t

0

νs dWs, (3)

where Wt is a standard Brownian motion, and µt and νt are adapted cádlág pro-

cesses, such that ∀t, pt ∈ (0, 1) almost surely.

Second, we need a consistent estimator of functionals of the form
∫ 1

0
pms ds,

where m ≥ 1 is an integer number. For this reason, below we develop a theory of

estimation of all integrals of the type
∫ 1

0
f (ps) ds for a smooth enough test function

f (·). We then derive a non-parametric test designed to asymptotically discriminate

between the null of a time-independent pt and an alternative in which the proba-

bility of staleness varies during the day. Finally, under the (alternative) hypothesis

that pt is driven by a semimartingale (i.e., under Assumption 2), we derive a con-

sistent estimator of its integrated volatility.
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3.1 Idle and multi-idle time

We borrow the definition4 of idle time from Bandi et al. (2017)

ITn
.
=

1

n

n∑
j=1

1{
X

(n)
j,n−X

(n)
j−1,n=0

}, (4)

where X(n) is the observed price process defined in equation (1). The idle time, com-

puted over a trading day, yields the fraction of a day for which the price adjustments

are zero. Despite its simplicity, idle time encompasses economically meaningful fea-

tures of the data-generating process of financial asset prices. However, we are not

going to discuss this point further and we refer readers to the paper by Bandi et al.

(2018) and the references therein for additional discussions. We focus instead on

the limiting properties of ITn, which are exposed in the following theorem.

Theorem 3.1. Under Assumption 1, as n→∞, we have that:

ITn
u.c.p−→

∫ 1

0

ps ds.

In addition, if both Assumptions 1 and 2 hold, as n→∞,

√
n

(
ITn −

∫ 1

0

ps ds

)
stably
=⇒ MN (0,ΣIT) , (5)

whereMN (0,ΣIT) denotes the mixed-normal distribution with a stochastic variance

ΣIT and where ΣIT is defined as:

ΣIT =

∫ 1

0

ps (1− ps) ds. (6)

Proof. See Appendix A.2.

The u.c.p limit implies that ITn is a consistent estimator of the integrated

probability of price staleness over one trading day, and this result holds under very

general assumptions on the dynamics of the process pt.

Under Assumption 2, the difference ITn −
∫ 1

0
ps ds converges stably at rate n1/2

to a zero-mean (mixed) normal distribution whose variability has an intuitive ex-

pression. Indeed, in the case of constant probability of price staleness, for example

pt = p0 ∀ t ∈ [0, 1], the asymptotic variance coincides (given the independence of

4There is a subtle difference between the definition in equation (4) and the idle time as intro-
duced by Bandi et al. (2017), as in this latter case idle time indicates the percentage of log returns
that in absolute value are below an asymptotically vanishing threshold ξn. We set ξn = 0 because
in our theoretical framework the introduction of a threshold is unnecessary.
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the driving Bernoulli variates) with the variance of a Bernoulli random variable

with mean p0, that is p0 (1− p0). In the non-constant case, the expression of the

asymptotic variance naturally generalizes to its integral version.

Because ITn is a consistent estimator of
∫ 1

0
ps ds, a feasible confidence interval

for ITn can be readily defined once a consistent estimator of
∫ 1

0
p2
s ds is available.

Actually, we consider the more general problem of developing a consistent estimator

of
∫ 1

0
(ps)

m ds for some integers m ≥ 2. For this purpose, we introduce the (m)-idle

time defined as:

IT(m)
n

def
=

1

n−m

n−m∑
j=1

m∏
q=0

1{
X

(n)
j+q,n−X

(n)
j+q−1,n=0

}.

The rationale of the estimator is the following. Consider IT(m)
n for a fixed m ≥ 2

and j ∈ {1, . . . , n−m}. If all the m consecutive price adjustments are zero, the

product of the indicator functions is equal to one and contributes to the summation.

Conversely, if at least one among the m price adjustments is different from zero,

the product of the indicator functions is equal to zero and does not contribute to

IT(m)
n . When Bernoulli variates are i.i.d, IT(m)

n estimates the joint probability of m

consecutive zeros. In the most general case, we have the following result.

Theorem 3.2. Under Assumption 1 and Assumption 2, as n→∞, we have:

IT(m)
n

u.c.p−→
∫ 1

0

(ps)
m ds.

Moreover, as n→∞:

√
n

[
ITn −

∫ 1

0
ps ds

IT(m)
n −

∫ 1

0
(ps)

m ds

]
stably
=⇒ MN

(
0,Σ(m)

)
,

where MN (0,Σ(m)) denotes the mixed-normal distribution with covariance matrix:

Σ(m) =

[ ∫ 1

0
ps (1− ps) ds

∫ 1

0
mpms (1− ps) ds∫ 1

0
mpms (1− ps) ds

∫ 1

0
pms

pms (2m+1)−pm+1
s (2m−1)−(1+ps)
1−ps ds

]
.

Proof. See Appendix A.2, Lemma 5.

The estimation of the entries of the matrix Σ(m) requires a consistent estimator

of functionals of the form:

U (f) =

∫ 1

0

f (ps) ds, (7)

8



 Electronic copy available at: https://ssrn.com/abstract=3283628 

with f (·) being a (sufficiently regular) deterministic function. We discuss this point

below.

3.2 Local estimation of the probability of staleness

The estimation of functionals of the type (7) is feasible once a local estimator of pt

is available. Therefore, we first choose a sequence kn ≥ 2 of integers that satisfies

kn →∞ and kn∆n → 0, and then we define the local idle time as:

p̂i (kn) =
1

kn

kn−1∑
j=0

1{
X

(n)
i+j+1,n−X

(n)
i+j,n=0

} i ∈ {1, . . . , n− kn} . (8)

Note that the condition kn∆n → 0 ensures that we are taking local averages. The

functional U (f) can then be estimated via standard Riemann sums, in which the

instantaneous probability of flatness is replaced by the local idle time in (8). For

this reason, we define the discretized version of U (f) as:

U (∆n, f)n = ∆n

n−kn+1∑
i=1

f (p̂i (kn)) ,

and we derive its asymptotic properties in the following theorem.

Theorem 3.3. Let f ( · ) be a locally bounded function. Under Assumption 1 and

Assumption 2, as n→∞, it holds that:

U (∆n, f)n
u.c.p.−→

∫ 1

0

f (ps) ds. (9)

Proof. See Appendix A.3.

The idea of estimating the functionals U (f) through U (∆n, f)n follows the

same logic as in Jacod and Rosenbaum (2013, 2015) for the estimation of volatility

functionals. As in their case, the U (∆n, f)n in (9) admits a stable CLT with an

F -conditional Gaussian limit, which is, however, not centered. If kn ∼ θ/
√

∆n for

some constant θ, the F -conditional mean of the limit consists of several bias terms

depending on end effects, the second derivative of f , and the quadratic variation of

pt. If kn diverges slower than 1/
√

∆n, the F -conditional mean of the limit depends

only on the second derivative of f , while the other bias terms are asymptotically

immaterial. Because the estimation of the quadratic variation of pt carries some

complications (in particular, the convergence rate of the estimator is small, see

Jacod and Rosenbaum, 2015), in what follows we will assume that kn
√

∆n → 0.

9
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Under these settings, the bias-corrected5 version of U (∆n, f)n takes the form:

U ′ (∆n, f)n = ∆n

n−kn+1∑
i=1

(
f (p̂i (kn))− 1

2 kn
f ′′ (p̂i (kn)) p̂i (kn) (1− p̂i (kn))

)
(10)

and delivers the following stable CLT.

Theorem 3.4. As n→∞, let kn be a sequence of integers such that k2
n∆n → 0 and

k3
n∆n →∞. In addition, let f be a test function satisfying the following condition:

∣∣f (j) (p)
∣∣ ≤ K

(
1 + |p|m−j

)
, j = 0, 1

for suitable positive constants K and m. As n → ∞, under Assumption 1 and

Assumption 2, we have that:

1√
∆n

(
U ′ (∆n, f)n −

∫ 1

0

f (ps) ds

)
stably
=⇒ MN (0,ΣU),

where MN (0,ΣU) denotes the mixed-normal distribution with covariance matrix:

ΣU =

∫ 1

0

f ′ (ps)
2 ps(1− ps) ds.

Proof. See Appendix A.3.

Finally, in all the empirical applications we will adopt the finite-sample correc-

tion:

U ′′ (∆n, f)n =
(n− kn + 1)−1

∆n

U ′ (∆n, f)n , (11)

which mitigates the impact of the end effects in short samples and is asymptotically

irrelevant. In Section 4, we compare the performances of U ′′ (∆n, f)n and IT(m)
n in

estimating the integrated powers of pt.

3.3 A test for constant against time-varying probability of

staleness

We now describe how the inferential theory discussed thus far allows deriving a

statistical test able to discriminate, over one day of observation, between a constant

and a time-varying probability of staleness, over one day of observation. Consider,

5Notice that the form of the bias is analogous to that of Jacod and Rosenbaum (2013), Equation
(3.8). As in the latter, this bias is due to the local estimation of the probability of staleness.

10
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therefore, the following partition of the sample space Ω:

Ω0 =

(
ω ∈ Ω

∣∣∣∣ ∫ 1

0

(pt(ω))m dt =

(∫ 1

0

pt(ω) dt

)m)
,

Ω1 =

(
ω ∈ Ω

∣∣∣∣ ∫ 1

0

(pt(ω))m dt 6=
(∫ 1

0

pt(ω) dt

)m)
,

(12)

where m is an arbitrary integer. If a path pt (ω) is constant on [0, 1] then ω ∈ Ω0.

On the contrary, if ω ∈ Ω1 then the corresponding trajectory of the probability of

staleness must, at least, depart from a constant path in a sub-set of the interval

[0, 1] with a non-zero Lebesgue measure. By virtue of Theorem 3.1, Theorem 3.2,

and the delta method, the random variable defined as:

Ψn,m
def
=

√
n
(

IT(m)
n − (ITn)m

)
√

(ITn)2m+1(m2+2m−1)−(ITn)2m(2m2+2m+1)+(ITn)m+1+(ITn)m

ITn−1

(13)

is the natural candidate for test statistics that may asymptotically distinguish

whether the observed price staleness, as defined through Assumption 1, stems from

a pt in Ω0 or in Ω1. The asymptotic limits of the Ψn,m test statistics are discussed

in the following corollary.

Corollary 1. As n→∞:Ψn,m
stably
=⇒ N(0, 1) on Ω0,

Ψn,m
p−→ +∞ on Ω1.

Proof. See Appendix A.2.

The limiting null distribution of Ψn,m coincides with that of the zero-mean nor-

mal random variable with unit variance while, on the alterative, the test statistics

diverges in probability, thus delivering a unit power. Note that the asymptotic

properties of Ψn,m are independent from the value of m. In the finite sample, how-

ever, m can trade off the size and power of the test. We will discuss this point in

Section 4, which is dedicated to the Monte Carlo simulations.

3.4 On the estimation of the volatility of staleness

In this section, we prove that under the semimartingale model of Assumption 2,

which falls within the class of processes compatible with Ω1, it is possible to define

a feasible and consistent estimator of the quadratic variation of the probability

of staleness, that is ν
.
=
∫ 1

0
ν2
s ds. From an economic point of view, interpreting

11
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pt as an illiquidity proxy6, ν is readily interpretable as a measure of volatility of

illiquidity. If pt were observed, the natural estimator for the quadratic variation of

the semimartingale in (3) would be:

n∑
i=1

(∆n
i p)

2 ,

where ∆n
i p = pi,n − pi−1,n. However, the process p is latent, and therefore a proxy

for the discrete increments ∆n
i p is needed. The local idle time in equation (8) can

be adopted for this purpose, as stated in the following theorem.

Theorem 3.5. Let kn = bθ
√
nc be a sequence of integers for some constant θ > 0.

As n→∞, under Assumption 1 and Assumption 2, it holds that:

ν̂
?

n(kn)
.
= k−1

n

n−2kn+1∑
i=1

(p̂i+kn(kn)− p̂i(kn))2 p−→ 2

3

∫ 1

0

ν2
s ds+

2

θ2

∫ 1

0

ps (1− ps) ds ,(14)

where p̂i(kn) is the local idle time defined in equation (8).

Proof. See Appendix A.4.

Several remarks are needed at this point. First, in contrast to the assumption in

Theorem 3.4, now we must assume kn ∼ θ/
√

∆n. Second, the sum of the squared

increments of local idle time converge in probability to two-thirds of the integrated

volatility of pt plus a bias term that is proportional to the asymptotic variance

of ITn (cfr. Theorem 3.2). Nevertheless, this bias does not constitute an issue

because it can be consistently estimated via U ′′ (∆n, f)n using a suitable f . Indeed,

a consistent estimator of ν can be defined as:

ν̂n
.
=

3

2

(
ν̂
?

n(kn)− 2

θ2
U ′′(∆n, f)n

)
, (15)

where f (x) = x (1− x). Note that, by construction, it is not guaranteed that

ν̂n ≥ 0. To circumvent this problem, one might use max
(
ν̂n, 0

)
instead as a non-

negative estimator.

6The interpretation of pt as an illiquidity proxy is (mainly) motivated by the work of Bandi
et al. (2017), where the authors provide an economic rationale for zeros that hinges on micro-
structural theories of price formation with transaction costs and asymmetries in information. In
particular, the probability of the occurrence of a zero return depends on (pt)t≥0.
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4 Monte Carlo simulations

In the absence of finite-sample distortions, the implementation of the asymptotic

theory developed in Section 3 would require the adoption of the highest frequency

available for the data; the greater the frequency the closer the random quantities are

to their limits (either in probability or stably in law). Nevertheless, price discrete-

ness may affect these limits, producing unwanted spurious effects. More precisely,

in the presence of rounding, there could be some extra zero returns not generated

by “genuine” staleness, that is not driven by the stochastic process pt defined in

Assumption 1. In this section, we explore the finite sample contaminations of the

asymptotic theory by means of Monte Carlo simulations. In particular, we want

to assess both the accuracy of IT(m)
n and U ′′ (∆n, f)n in estimating the integrated

volatility functional of pt and the sizes and the powers of the test Ψn,m defined in

(13). For this purpose, we generate a large artificial dataset of efficient price paths

contaminated by staleness and rounded at one cent (as imposed by the actual set-

tings of electronic financial markets). For each replication we simulate a trading

day of 6.5 hours on a gird of one second for a total of 6.5 × 60 × 60 steps. To

begin, we create the path of an efficient log-price process Yt = log (Pt) driven by a

one-factor stochastic volatility model, the dynamics of which are described by the

SDE:

d log σ2
t =

(
α− β log σ2

t

)
dt+ η dWσ,t,

dYt = µ dt+ cσ σt dWY,t, (16)

where Wσ,t and WY,t are two Brownian motions with corr (dWσ,t, dWY,t) = ρ dt.

We adopt the values for the parameters α, β, η, µ, and ρ estimated by Andersen

et al. (2002) on S&P500. The volatility factor cσ can be tuned to generate different

volatility scenarios. It will be equal to cσ = 2, unless otherwise specified. Numerical

integration of the SDE in (16) is performed on a one-second time grid via a standard

Euler scheme and with the initial conditions Y0 = log (P0), with P0 = 100, and

log σ2
0 = α/β. Once simulated, the efficient prices are sampled every 30 seconds. For

each replication this sub-sample produces log prices Yj,n with j = 1, ..., n and n =

780. Then, on the time grid of 30 seconds we construct the staleness-contaminated

log-price process Xj,n following the recursive equation:X0,n = Y0,n = log (P0)

Xj,n = (1− Bj,n) Yj,n + Bj,nXj−1,n,
(17)
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where Bj,n are Bernoulli random variables generated as described below, according

to either the null Ω0 or the alternative Ω1 (see equation (12)). Finally, the prices

exp (Xj,n) are rounded at one cent. The rounding is the only reason that prevents

taking the highest frequency available.

The null Ω0: constant probability of staleness. In this specification, the Bj,ns

are i.i.d. Bernoulli random variables with constant expected value E [Bj,n] = pF for

all j. We put7 pF = 0.5.

The alternative Ω1: semimartingale-driven probability of staleness. This

specification corresponds to Assumption 2. For each replication, we generate a

path of a latent stochastic process u with the following (discrete-time) integration

scheme: u0,n = F−1 (pF )

uj,n = uj−1,n + (F−1 (pF )− uj−1,n) ∆n + σu εj,n
√

∆n,
(18)

with j = 1, ..., n, ∆n = 1/n, n = 780, pF = 0.5, and where F−1 (x) is the inverse

of the cumulative distribution function of a standard Gaussian variable. The εj,ns

are i.i.d. standard Gaussian shocks, and σu is a tuning parameter that we set to

σu = 1.5. Next, a path of the stochastic probability pt, defined in equation (2) of

Assumption 1, is generated as:

pj,n =

∫ uj,n

−∞

1√
2π

e−z
2/2 dz = F (uj,n) . (19)

Note that since because u is a mean-reverting around F−1 (pF ) by construction,

then pt is mean-reverting around pF . Therefore, on average, the probability of

zeros is similar to the value used in the constant probability case.

Figure 2 displays an example of observed log price under Assumption 2 for

pt. In the figure, observed stock price dynamics are indicated in black, red crosses

represent zero return, and the dotted line with blue circles represents the probability

of staleness. Looking at the first part of the (fictitious) trading day (before 10:30

EST) we see that the price process is considerably sticky with a high probability of

flat trading, as indicated by the circles. As time flows, the price process experiences

different regimes (in terms of staleness), changing from a quite erratic behaviour

(from around 10:30 EST to 13:00 EST) to quite sluggish behaviour (from 13:00 EST

until the end of the day).

7With this numerical choice we are assuming that, at the frequency of 30 seconds, fifty percent
of the log-returns are zeros. This corresponds to a moderately high level of illiquidity for the asset.
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Figure 2: Example of a simulated log-price path of the observed stock price under
Assumption 2 for pt. The path of the stock price is indicated in black (with values
reported on the left vertical axis) while red crosses signal the position of zero returns.
The dotted line with blue circles represents the probability of staleness (with values
reported on the right vertical axis).

4.1 Sizes and powers of Ψn,m

The test statistic Ψn,m is characterized by a choice variable; more precisely, it

depends on the number m of factors in the multi-idle time IT(m)
n defined in (7).

Asymptotically, the distribution of Ψn,m is unaffected by the value of m, as well

as its divergence toward +∞ under the correspondent alternative hypothesis. Nev-

ertheless, in finite sample m can be chosen to trade off the size and power of the

test. Following the procedures described in Section 4, we generate 104 replications

of (rounded) price paths under the null Ω0 and the alternative Ω1, and, for differ-

ent choices of m, we evaluate the size and power of the test Ψn,m by computing

its rejection rates under the proper set of artificial data. Figure 3 summarizes the

results of this numerical experiment; in particular, we report 5% rejection rates of

the test under the null and the alternative. A reasonable trade-off between size and

power is attained taking m around 5, a choice that maximizes power and gives a

conservative (less than the theoretical 5%) size. Of course, the specific power of the

test depends on how the alternative is formulated and, in our case, on the tuning

parameter σu. For example, an higher value for the parameter σu in (18) would

deliver a more powerful Ψn,m.
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Figure 3: This plot reports 5% rejection rates of the test based on the asymptotic
limit of the random variable Ψn,m defined in equation (13). We set n = 780 (which
corresponds to sampling prices every 30 seconds, assuming a day of 6.5 hours), and
we use m as an independent variable. The blue line with circles and the red dotted
line correspond, respectively, to the rejection rates under the null Ω0 (i.e., the size
of the test) and the alternative Ω1 (i.e., the power of the test). Prices are rounded
at one cent.

4.2 Estimation of
∫ 1

0 ps (1− ps) ds and of
∫ 1

0 ν
2
s ds

This section is dedicated to the assessing the finite sample accuracy in the estimation

of functionals of pt, that is U(f) =
∫ 1

0
f (ps) ds, and the integrated volatility of pt,

namely
∫ 1

0
ν2
s ds. Concerning the functionals, we focus on estimating the asymptotic

variance of idle time that requires selecting f(x) = x(1 − x) (see Theorem 3.1) in

U(f). We generate sample paths of the probability of staleness on Ω1, constructing

the paths of pt according to equations (18) and (19), with σu = 2. First, we consider

estimation without rounding. Second, we analyze estimation when the price process

generated according to equation (17), is rounded at one cent.

We start with estimating ΣIT, defined in equation (6). According to Theorem

3.2 and Theorem 3.3, this random variable is estimated either by the difference

ITn−MIT(2)
n or by U ′′ (∆n, f)n with f (x) = x−x2. Figure 4 summarizes the results

of this numerical experiment for
∫ 1

0
ps (1− ps) ds ranging between 0 and 0.3. Both

estimators are remarkably precise. However, the dispersion of U ′′ (∆n, f)n, which is

computed with the block length kn = 13, is considerably smaller than the variance

of ITn −MIT(2)
n . This is not totally surprising, as the former estimator constitutes

a localized maximum likelihood estimator. This result is robust across different
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choices of the tuning parameter kn as illustrated by Figure 5, which reports the

root mean square error8 (RMSE) of U ′′ (∆n, f)n as a function of kn and the RMSE

of the difference estimator, ITn−MIT(2)
n , which does not depend on kn. The RMSE

of U ′′ (∆n, f)n has a U-shaped pattern with the minimum at around kn ≈ 13, which

roughly corresponds to kn ≈ n2/5. However, the variation of RMSE of U ′′ (∆n, f)n

across kn is smaller than the reduction in the RMSE in comparison to the difference

estimator.

Figure 4: Scatter plot of the asymptotic variance of idle time, that is,
1∫
0

ps(1−ps) ds and

its estimated values based on multi-idle time (left panel) and local idle time (right panel)
with kn = 13. The black line represents the true value.

Figure 5: Root Mean Squared Error (RMSE) of ITn − MIT(2)
n (red star) and of

U ′′ (∆n, f)n (black line with circles) in estimating
1∫
0

ps(1− ps) ds.

8For both the estimators, the bias is an order of magnitude smaller than the standard deviation.
Therefore, in practice the RMSEs coincides with the standard deviations. For this reason, in Figure
5 we report only the RMSE.
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Next, we turn to estimating the integrated variance of pt. In finite samples, the

performance of our estimator, defined by equation (15), crucially depends on the

implementation details. The estimator consists of the two parts:

ν̂n =
3

2
ν̂
?

n (kn)− 3

θ2
U ′′(∆n, f)n, (20)

where ν̂
?

n (kn) is defined in equation (14).

Theorem 3.5 requires that the block length chosen for the computation of ν̂
?

n

is kn ∼ θ/
√

∆n for some θ > 0. In contrast, based on Theorem 3.4, we need

a different block length, say k′n, satisfying (k′n)2 ∆n → 0 and (k′n)3 ∆n → ∞ for

computing U ′′(∆n, f)n, the second part of the estimator. In finite samples, this

means that the block length used for estimating the “bias” term in ν̂n ought to

be smaller than the block length used for computing the leading part. Extensive

Monte Carlo experiments suggest that the best finite-sample performance of ν̂n is

achieved for kn = b1/
√
nc and k′n = bkn/5c.

With this heuristic rule of thumb, we estimate daily and monthly integrated

variance of pt. Figure 6 displays the histograms of the difference between true and

estimated values. The left panel corresponds to daily estimates. The figure shows

that the estimator is nearly unbiased, as the difference is centred at zero. However,

it is highly volatile because the convergence rate of ν̂n is n1/4 and not n1/2 as,

for example, for the estimator of integrated functionals of pt. Estimating
∫ 1

0
ν2
s ds,

monthly instead of daily allows reducing the variance, as illustrated in the right

panel of Figure 6. Theoretically, the performance of the estimator can be improved

by moving to the higher frequencies. However, in practice this is hardly possible

due to the adverse effect of price discreteness discussed below.
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Figure 6: Histogram of the relative bias of the estimator ˆ̄νn defined in equation (15) in
estimating the integrated volatility

∫ 1
0 ν

2
s ds.

As discussed above, the rounding of prices may produce a number of zero returns,
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that are not associated with the Bernoulli random variables generated in equation

(17). Therefore, it disrupts the theoretical limiting behavior of the estimators. To

mitigate this contamination effect, the estimators ought to be implemented at sam-

pling frequencies for which the number of zeros due to the rounding is relatively

small. It can be easily verified that for a given sampling frequency the number of

zeros produced by rounding is inversely related to both the (average) price level and

its (average) volatility. To illustrate this effect, we report in Figure 7 the relative er-

rors (in percentage and averaged across one thousand simulations) of the estimators

U ′ (∆n, x(1− x))n (left panel) and ν̂n (right panel) for different values of the initial

price P0 and of the average daily realized volatility9. In both cases, considering the

area defined by initial prices larger than (roughly) 75 and daily realized volatilities

larger than (roughly) 1%, the biases of the two estimators are negligible. Therefore,

the estimation theory is meant to work for such assets. For assets with either lower

prices of less volatility, the estimators ought to be implemented at lower frequencies.

Figure 7: Relative bias (in percentage) as a function of the initial price P0 and of the
(average) daily volatility (in percentage) of (left panel) the estimator U ′ (∆n, f)n

defined in equation (10), with f (x) = x (1− x), in estimating the stochastic integral∫ 1

0
ps (1− ps) ds and of (right panel) the estimator ν̂n defined in equation (15), in

estimating the integrated volatility
∫ 1

0
ν2
s ds.

5 Empirical application

As a first empirical application of our theoretical framework, we test whether the

paths of pt are constant or time-varying using a large dataset of transaction prices

of NYSE-listed stocks. Following the limiting results discussed in Section 3.3, this

amounts to discriminating between the two hypotheses:

H0 :
(

(pt(ω))t∈[0,1] ∈ Ω0

)
against H1 :

(
(pt(ω))t∈[0,1] ∈ Ω1

)
.

9We generate different levels of average volatility by varying the factor cσ in equation (16).
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We implement the test for every stock and day in our sample. We employ a data

set whose constituents are the most 250 liquid10 NYSE-listed stocks. The data

range from January 3, 2006 to December 31, 2014, covering a time span of 2246

trading days. We rank the stocks in deciles according to total volume traded,

and within each decile we pick up the stock with the highest average price. This

choice is dictated by the necessity of mitigating, the impact of rounding as much

as possible. The data filtering described so far produces the 10 tickers APA, BA,

CVX, DE, EOG, GS, MCD, MMM, UNP, and XOM. Transaction prices are sampled

with previous-tick interpolation, every 30 seconds producing 780 observations from

09 : 30 EST to 15 : 30 EST for each trading day.

Figure 8 shows the kernel density of the test statistics Ψn,m, computed pooling

across the 10 stocks and all the days in the sample. The distribution of Ψn,m

significantly differs from that of a standard normal, indicating that for the majority

of days and stocks the null hypothesisH0 is rejected. This constitutes clear empirical

evidence that points toward a time-varying model for (pt)t≥0.
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Figure 8: Kernel smooth density estimates of the daily test statistics of Ψn,m com-
puted pooling across the 10 selected stocks and the 2246 trading days.

This feature is further confirmed by looking at historical time series of local

idle time. As an example, consider the plots in Figure 9 in which we consider the

case of the ticker XOM, the most liquid of the 10 selected stocks. The left panel

reports two paths of the estimator defined in equation (8), for the day with the

smallest (black continuous line) and largest (blue lines with empty circles) value of

10In terms of average transaction volumes during the period considered.
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ˆ̄νn (cfr. equation (15)) . In the morning, the level of staleness is around 20% for

both days with low and high volatility of pt. While for the first day the process

pt hovers around an average value, for the other day it increases to around 60% at

10 : 30 EST and 14 : 30 EST. The right panel of Figure 9 shows the local idle time

estimates, and 95% confidence bands averaged across the whole sample. Notice

that local idle time exhibits a pronounced inverse U-shape pattern mirroring the

U-shape of local volatility. In addition, the occurrence of zeros is almost two times

less probable in the morning with respect to the noonday; the average local idle time

is equal to 0.12 at 09 : 30 EST, and increases up to 0.24 at 12 : 30 EST. Analyzed

together, the information provided by the left and right plots of Figure 9, indicates

that both deterministic and stochastic components significantly contribute to the

intraday variation of price staleness.
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Figure 9: (Right panel). Local idle time estimates for days corresponding to the
lowest (black line) and the highest (blue line with empty circles) volatility of (pt)t≥0

for XOM. (Left panel). Average, of the intraday local idle time estimates for XOM
computed over the whole sample.

We conclude the empirical investigation with an econometric analysis of the eco-

nomic determinants of the integrated volatility of pt. More precisely, assuming that

pt is generated by the semimartingale in equation (3), we investigate which dimen-

sions of illiquidity among transaction volume, bid-ask spread, and price volatility,

mostly affect its integrated volatility
∫ 1

0
νs ds over a given period. In particular, for

the purpose of minimizing finite sample distortions we focus on weekly integrated

volatility. To carry out our analysis, for each stock in the sample we construct

weekly estimates of:

1. integrated volatility of pt, without bias correction, computed as 3/2 · ν̂∗n(kn),

where ν̂
∗
n(kn) is defined as equation (17). Henceforth, we indicate this variate

with ˜̄ν
(w)
t .

2. Integrated pt and p2
t , henceforth indicated as Int

(w)
t and Int2

(w)
t , respectively.
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3. Average transaction volume, henceforth indicated as Vol
(w)
t .

4. Average bid-ask spread, henceforth indicated as Spread
(w)
t .

5. Five-minute realized volatility, henceforth indicated as

√
RV

(w)
t .

The value of kn is set as in the Monte Carlo study. To construct the integrated

quantities defined in point 2 above, we implement the estimator in equation (11), as

suggested by the the numerical simulation. Moreover, to achieve a suitable scaling

in the regressions, transaction volume is measured in thousands of USD. According

to Theorem 3.5, ˜̄ν
(w)
t is the biased measure of the integrated volatility of pt, with the

bias proportional to the difference Int
(w)
t − Int2

(w)
t . Therefore, to isolate the effect

of the explanatory variables on the volatility of pt we include the variates Int
(w)
t and

Int2
(w)
t in the set of regressors.

In light of these considerations, we run the following regression:

˜̄ν
(w)
t = a0 + a1Int

(w)
t + a2Int2

(w)
t + a3Vol

(w)
t + a4Spread

(w)
t + a5

√
RV

(w)
t + εt, (21)

where εt denotes random errors, and the index t runs across the 451 weeks of our

sample.

Table 1 reports the ordinary least squares (OLS) estimates of the regression

(21). As, by construction, the dependent variable ˜̄ν
(w)
t includes a bias term of the

form 3
θ

(
Int

(w)
t − Int2

(w)
t

)
, under the null of an integrated variance of pt indepen-

dent from pt itself the coefficients a1 and a2 should sum up to zero and be both

equal in absolute value to 3
θ
. The estimates in Table 1 suggest that this is not the

case, hence pointing toward a dependence of the instantaneous volatility process

νt in (3) from the process pt. The coefficients a3, a4, and a5 capture the effect of

volume, bid-ask spread, and price volatility on the weekly integrated variance of pt.

Table 1 shows that only the effect of volume (a3) is quite significant and negative,

whereas the spread and the realized variance (a4 and a5) are mostly not (or mildly)

significant (apart for the notable exception of MCD). For all considered stocks, the

adjusted coefficients of determination are quite high, ranging from 0.614 for MCD

to 0.895 for GS. This suggests that over a given period, most of the quadratic vari-

ation of price staleness can be explained by the average level of staleness and the

average transaction volume. Because the level of the staleness is itself affected by

the transaction volume, this result points toward a non-linear dependence of the

volatility of staleness on transaction volumes, something that deserves a deeper in-

vestigation, especially in terms of the implications for micro-structural models of

price formation.
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a0 a1 a2 a3 a4 a5 R2

EOG 0.033 2.970∗∗∗ 2.250∗∗ −0.043∗∗∗ 0.586 −0.003 0.794
(0.070) (0.442) (0.683) (0.009) (0.414) (0.009)

UNP 0.144∗∗ 2.010∗∗∗ 2.974∗∗∗ −0.072∗∗∗ −0.217 0.007 0.799
(0.068) (0.352) (0.507) (0.014) (0.362) (0.009)

APA 0.009 2.920∗∗∗ 1.550∗ −0.013∗∗ 0.433 −0.004 0.775
(0.052) (0.358) (0.604) (0.006) (0.341) (0.006)

DE 0.005 3.004∗∗∗ 1.511∗ −0.021∗∗ −0.190 0.008 0.743
(0.063) (0.384) (0.589) (0.010) (0.516) (0.010)

MMM 0.192∗∗∗ 0.558 5.960∗∗∗ −0.034∗∗∗ −1.143∗∗ 0.007 0.782
(0.062) (0.376) (0.600) (0.006) (0.561) (0.009)

BA 0.055 1.689∗∗∗ 4.742∗∗∗ −0.030∗∗∗ −0.234 0.014 0.807
(0.068) (0.383) (0.588) (0.006) (0.532) (0.011)

GS 0.041 2.171∗∗∗ 5.366∗∗∗ −0.023∗∗∗ −0.287 0.006∗∗∗ 0.895
(0.030) (0.271) (0.545) (0.004) (0.192) (0.002)

MCD 0.307∗∗∗ 1.203 3.495∗∗∗ −0.040∗∗∗ −5.968∗∗∗ 0.026 0.614
(0.117) (0.588) (0.794) (0.004) (1.504) (0.021)

CVX 0.204∗∗∗ −0.842 10.374∗∗∗ −0.007∗∗∗ −0.144 −0.014∗∗ 0.809
(0.046) (0.377) (0.753) (0.002) (0.442) (0.006)

XOM 0.114∗∗∗ 0.668 6.294∗∗∗ −0.003∗∗∗ −0.515 −0.006 0.826
(0.043) (0.317) (0.575) (0.001) (0.667) (0.007)

Table 1: Table reports OLS estimates of the coefficients of the linear regression
in equation (21) along with the correspondent standard errors (between brackets)
and the adjusted coefficients of determination (R2). Coefficients which result to be
significant at 10%, 5% and 1% confidence levels are marked, respectively, with one,
two and three stars.
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6 Conclusions

In this paper, we provide a general econometric framework where the statistical

properties of the likelihood of observing zero returns is driven by a stochastic process

pt, which we call the (instantaneous) probability of staleness, whose unconditional

expected value determines the probability of observing a repeated price.

Zero returns are naturally linked to the lack of liquidity. The proposed framework

allows us to make statistical inferences about liquidity-related economic variates in

a way that is analogous to the analysis of integrated volatility. In particular, we

develop an asymptotic theory designed to test whether, the process pt follows a

constant or a time-varying trajectory on an intradaily basis. In the first scenario,

zero returns are uniformly distributed during the day, while the second scenario

involves more complex dynamics, such as the clustering of zero returns.

Using the suitably defined statistical test, we show, on a large dataset of NYSE-

listed stock that the second scenario is largely the most recurrent. Supported by

such strong empirical evidence, we formulate the (alternative) hypothesis that pt

follows a Brownian semimartingale dynamic. Under this (new) null hypothesis, we

derive CLT for the idle time and the (m)-idle time, two functionals of the observed

price paths defined as the percentage (at a given sampling frequency) of zero returns

and of m consecutive zero returns, respectively. Still under the null of a Brown-

ian semimartingale for pt, we prove how its integrated (over a given time horizon)

volatility (indicated as ν̄) can be consistently estimated with a methodology anal-

ogous to that used for the estimation of integrated log-price volatility. High values

of ν̄ are associated with high variability in the occurrence of zero returns during

the period of estimation.

We conclude our analysis with an econometric exercise designed to identify which

of the three important dimensions of illiquidity (i.e., transaction volume, bid-ask

spread, and price volatility) are the main determinants of the volatility of pt. Using

the same dataset used for the empirical test, we provide evidence that the (weekly)

integrated volatility of pt is, conditionally on the (weekly) average pt, negatively

determined by (average weekly) transaction volume, and is almost unaffected by

(average weekly) bid-ask spread and (weekly) realized volatility. In summary, while

pt is, as the idle time of Bandi et al. (2017), influenced simultaneously by all the

three aforementioned dimensions of illiquidity, its volatility is, conditionally on the

average pt, almost exclusively driven by transaction volumes. This empirical evi-

dence constitutes an additional feature of the price-formation dynamics useful for

the formulation of realistic market micro-structure models.
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A Appendix: Proofs

The appendix is divided into four parts. Section A.1 introduces the notation and collects auxiliary results on the

convergence of triangular arrays. Section A.2 is dedicated to the proofs of limiting results from Sections 3.1, 3.2 and 3.3.

Section A.3 presents the proofs of Theorems 3.3 and 3.4. Finally, the proof of Theorem 3.5 is presented in Section A.4.

A.1 Notations and auxiliary results

In what follows, we indicate with tj,n = j/n, j ∈ {0, . . . , n} the deterministic equispaced partition of the interval [0, 1]

and with Nn (s) = max {j | tj,n ≤ s}. Trivially, Nn (1) = n. We use the symbol
p−→ for the convergence in probability,

and
u.c.p−→ for the uniform convergence in probability.

Now, we specify the structure of the σ-field F . We have the following flows of information on F : i) (F (p)
t )t∈[0,1] is the

natural filtration associated with the process pt, ii) Utj,n is the σ-algebra generated by random variables U0,n, . . . , Uj,n,

and iii) Ftj,n = F (p)
tj,n ∨Uj,n is a discrete time filtration associated with partitioning the interval [0, 1] with a descretization

step ∆n = 1/n. Let F (p)
∞ = ∨t∈[0,1]F

(p)
t be the smallest σ-algebra, that contains ∪t∈[0,1]F

(p)
t , U∞ = ∨∞n=2 Un,n, and

Ftn,n
= F (p)

∞ ∨ Un,n. We than have F = F (p)
∞ ∨ U∞.

For the sake of readability, we denote, for a generic index j ∈ {1, . . . , n}, by Pj [ · ], Ej [ · ], Vj [ · ] the conditional

probability, the conditional expectation, and the conditional variance with respect to the filtration Ftj,n .

In what follows, our proofs and formalism will be inspired by those of Jacod (2012), Jacod and Protter (2012), and

Aı̈t-Sahalia and Jacod (2014). We say that a triangular array of random variables ξnj , j ∈ {0, . . . , n} is asymptotically

negligible (AN) if:

n∑
j=1

ξnj
u.c.p−→ 0,

that is,

sup
s∈[0,1]

∣∣∣∣∣∣
Nn(s)∑
j=1

ξnj

∣∣∣∣∣∣ p−→ 0. (22)

The following two remarks state simple properties that will be invoked repeatedly during the proofs.

Remark 1. Suppose that
∑n
j=1

∣∣ξnj ∣∣ converges to zero in L1, i.e.:

E

 n∑
j=1

∣∣ξnj ∣∣
→ 0. (23)

By standard argument, this implies that
∑n
j=1

∣∣ξnj ∣∣ p−→ 0 and so it is sufficient to note that

sup
s∈[0,1]

∣∣∣∣∣∣
Nn(s)∑
j=1

ξnj

∣∣∣∣∣∣ ≤ sup
s∈[0,1]

Nn(s)∑
j=1

∣∣ξnj ∣∣ =

n∑
j=1

∣∣ξnj ∣∣ p−→ 0

to conclude that condition (23) is enough to guarantee that ξnj is AN.

Remark 2. Throughout the paper, we will implicitly use this simple fact. If g (s) is a Riemann-integrable function then

on [0, 1]

sup
t∈[0,1]

∫ t

0

|g (s)| ds =

∫ 1

0

|g (s)| ds,

where for any sequence of function gn (s), uniform convergence on [0, 1] of the integral of |gn (s)| is equivalent to the

convergence of
∫ 1

0
|gn (s)| ds.

27



 Electronic copy available at: https://ssrn.com/abstract=3283628 

Finally, we remind remind readers of the following two lemmas that give us a simple criterion to conclude that a

triangular array is AN; these are used repeatedly in the rest of the appendix. The first one is Lemma 4.1 in Jacod (2012)

and the second is Lemma B.8 in Aı̈t-Sahalia and Jacod (2014).

Lemma 1. Let ξnj be a triangular array of Ftj,n-measurable random variables. If the following condition is satisfied:

n∑
j=1

Ej−1

[∣∣ξnj ∣∣] p−→ 0,

then
∑n
j=1 ξ

n
j

u.c.p−→ 0, i.e. ξnj is AN. Moreover, the same conclusion holds under the following two conditions:

n∑
j=1

Ej−1

[
ξnj
] u.c.p−→ 0, (24)

n∑
j=1

Ej−1

[(
ξnj
)2] p−→ 0. (25)

As a consequence, if Ej−1

[
ξnj
]

= 0 then condition (25) is sufficient to guarantee that
∑n
j=1 ξ

n
j

u.c.p−→ 0.

Lemma 2. If mn, `n ≥ 1 are arbitrary integers, and if for all n ≥ 1 and 1 ≤ i ≤ mn the variable ξnj is Ftj+`,n
-measurable,

and if
mn∑
j=1

∣∣Ej−1

[
ξnj
]∣∣ p−→ 0, `n

mn∑
j=1

E
[∣∣ξnj ∣∣2]→ 0,

then

sup
i≤mn

∣∣∣∣∣∣
i∑

j=1

ξnj

∣∣∣∣∣∣ p−→ 0,

that is
∑n
j=1 ξ

n
j

u.c.p−→ 0.

We now turn to characterizing the stable convergence of triangular arrays (cfr. Podolskij and Vetter, 2010, Definition

1). For a sequence of random variables Yn (representing the sequence of partial sums of a triangular array), the stable

convergence is defined as follows.

Definition 1. A sequence of random variables Yn defined on (Ω,F ,P) is said to converge G-stably with limit Y defined

on an extension of the original probability space (Ω′,F ′,P ′) if and only if for any bounded continuous function g and any

bounded G-measurable random variable Z it holds that:

E [g(Yn)Z]→ E [g(Y )Z] .

In what follows, by stable convergence we mean F (p)
∞ -stable convergence (denoted simply

stably
=⇒ ), unless otherwise stated.

The classical stable Central Limit Theorem of Hall and Heyde (1980) is not valid for the triangular arrays considered

in our paper. Indeed, by construction, we have that Ftj,m * Ftj,n whenever n > m. As a consequence, the nesting

assumption on the filtrations as in Theorem 3.2 of Hall and Heyde (1980) fails. However, a similar stable Central Limit

Theorem holds.

Theorem A.1. For any given integer ` consider the triangular array random variables:

γ
(`)
j,n = ϕ (Bj−`,n, . . . ,Bj,n,Ej−1 [Bj+1,n] , . . . ,Ej−1 [Bj+`,n]) ,
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where ϕ : R2 `+1 → R is a locally bounded function of a finite number of variables. Define the centred triangular array

X
(`)
j,n as:

X
(`)
j,n =

1√
n

(
γ

(`)
j,n − Ej−1

[
γ

(`)
j,n

])
and assume that:

n∑
j=1

(
X

(`)
j,n

)2 p−→ σ2, (26)

for an a.s. finite random variable σ. Then, as n→∞:

n∑
j=1

X
(`)
j,n

stably
=⇒ Z, (27)

where Z is a random variable with F (p)
∞ -conditional Gaussian distribution with variance σ2, defined on an extension of

the original probability space.

Proof. The technicalities of the proof largely follow the results in Hall and Heyde (1980), Lemma 3.1, and Theorem 3.2.

Because of the locally boundedness of ϕ and the distributional assumptions on random variables Bj−`,n, . . . ,Bj+`,n, it

is easy to check that max1≤j≤n

∣∣∣X(`)
j,n

∣∣∣ p−→ 0. Moreover, by hypothesis
∑n
j=1

(
X

(`)
j,n

)2 p−→ σ2 for an a.s. finite random

variable σ. As a consequence (cfr. Lemma 3.1 in Hall and Heyde, 1980), to prove the statement above it is sufficient to

prove that for all real t the random variable Tn (t) defined as (ı =
√
−1)

Tn(t)
.
=

n∏
j=1

(
1 + ı tX

(`)
j,n

)

converges to 1 as n→∞ weakly in L1. By definition, this is equivalent proving that for all E ∈ F , E [Tn (t) I (E)]→ P [E],

where I (E) is the indicator function of the event E. For a fixed 2 ≤ m ≤ n, let Em ∈ Ftm,m
. We compute:

E [Tn (t) I (Em)] = E
[
E
[
Tn (t) I (Em) |Ftm,m

]]
= E

E
 n∏
j=1

(
1 + ı tX

(`)
j,n

)
I (Em)

∣∣∣∣∣Ftm,m


= E

∏
j∈I1

(
1 + ı tX

(`)
j,n

)
I (Em)E

 ∏
j∈I2∪I3

(
1 + ı tX

(`)
j,n

) ∣∣∣∣∣Ftm,m


= E

∏
j∈I1

(
1 + ı tX

(`)
j,n

)
I (Em)E

E
 ∏
j∈I2∪I3

(
1 + ı tX

(`)
j,n

) ∣∣∣∣∣F (p)
∞

 ∣∣∣Ftm,m


= E

∏
j∈I1

(
1 + ı tX

(`)
j,n

)
I (Em)E

∏
j∈I2

(
1 + ı tX

(`)
j,n

) ∣∣∣Ftm,m

E
∏
j∈I3

(
1 + ı tX

(`)
j,n

) ∣∣∣F (p)
∞

 , (28)

where I1, I2, and I3 are three sets of indexes such that X
(`)
j,n ∈ Ftm,m

for j ∈ I1, X
(`)
j,n ∈ Ftm+`,m+`

for j ∈ I2, and

X
(`)
j,n ∈

(
Ftn,n�Ftm+l,m+l

)
for j ∈ I3. In particular,

(
Ftn,n�Ftm+l,m+l

)
denotes the smallest σ-algebra containing all the

events of Ftn,tn that are not included in Ftm+`,tm+`
. First, we note that I1 and I2 includes at most a finite number of

terms and that:

E

∏
j∈I3

(
1 + ı tX

(`)
j,n

) ∣∣∣F (p)
∞

 =
∏
j∈I3

E
[(

1 + ı tX
(`)
j,n

) ∣∣∣F (p)
∞

]
= 1,

because of the independence of the factors conditionally on F (p)
∞ and the fact that for each j ∈ {1, . . . , n}, X(l)

j,n has
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expected value equal to one. Equation (28) then become

E [Tn (t) I (Em)] = E

I (Em)
∏

j∈I1∪I2

(
1 + ı tX

(`)
j,n

) = P [Em] +Rn,

where the remainder term Rn consists of at most 22|I1∪I2| − 1 terms of the form E
[
I (Em) (it)

r
X

(`)
j1,n

. . . X
(`)
jr,n

]
, with

1 ≤ r ≤ |I1 ∪ I2| and j1, . . . jr ∈ I1 ∪ I2. Note that Rn converges to zero as n→∞. Consequently

E [Tn (t) I (Em)]
p−→ P [Em] .

Finally, let 4 denote the symmetric difference. For any E ∈ F and any ε > 0 there exists an m and an Em ∈ Ftm,m
,

such that P [E 4 Em] ≤ ε. Because Tn is uniformly integrable by assumption,

|E [Tn (t) I (Em)]− E [Tn (t) I (E)]| ≤ E [|Tn (t)| I (E 4 Em)] ,

and supn |E [Tn (t) I (Em)]− E [Tn (t) I (E)]| can be made arbitrarily small by choosing sufficiently small ε, and hence the

thesis.

We conclude this section with the following corollary, which will be used in the subsequent sections.

Corollary 2. Let X
(`)
j,n be a q-dimensional random vector with each component defined as X

(`)
j,n in Theorem A.1, such

that:
n∑
j=1

X
(`)
j,n

(
X

(`)
j,n

)′ p−→ Σ, (29)

for an a.s. finite positive definite random matrix Σ = {σi,j}. Then,

n∑
j=1

X
(`)
j,n

stably
=⇒ MN (0,Σ) ,

where MN (0,Σ) is a q-dimensional mixed-normal random variable.

Proof. The condition (29) implies that:

n∑
j=1

(
c′X

(`)
j,n

)2 p−→ c′Σc

for an arbitrary real valued vector c = (c1, ..., cq)
′
. Consequently, by Theorem A.1, we have:

n∑
j=1

c′X
(`)
j,n

stably
=⇒ MN (0, c′Σc) ,

where MN (0, c′Σc) denotes a mixed-normal random variable. Because c is arbitrary, the later convergence implies the

statement of the Corollary.

Remark 3. The statement of Theorem A.1 remains true if the condition (26) is replaced by the analogous condition for

conditional variances:
n∑
j=1

E
[(
X

(`)
j,n

)2
∣∣∣∣ Ftj,n] p−→ σ2.
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A.2 Proofs of limit theorems from Section 3.1, 3.2, and 3.3

The proofs of the limiting results from Sections 3.1, 3.1, and 3.3 follow directly from several auxillary lemmas on the

limiting behaviour of triangular arrays of Bernoulli random variables presented below.

We start with a remark about Assumption 2, which is repeatedly used in the subsequent proofs.

Remark 4. Under Assumption 2,

Ej−1 [Bj,n] = pj−1,n +Op

(
∆1/2
n

)
. (30)

Indeed,

Ej−1 [Bj,n] = E
[
E
[
Bj,n

∣∣∣ Ftj−1,n
∨ F (p)

tj,n

]]
= Ej−1 [pj,n] = pj−1,n + Ej−1 [pj,n − pj−1,n] , (31)

where

|Ej−1 [pj,n − pj−1,n]| ≤ Ej−1 [|pj,n − pj−1,n|] ≤ C (∆n)1/2,

where the last inequality follows from standard estimates for semimartingales (Jacod, 2008). Moreover, by Proposition 1

of Barndorff-Nielsen et al. (2006),

|pj,n − pj−1,n| = Op

(
(∆n |log ∆n|)1/2

)
,

which implies that for every finite integer k

pj+k = pj−1 +Op

(
k (∆n |log ∆n|)1/2

)
. (32)

Lemma 3. Under Assumption 2, as n→∞,

1

n

n∑
j=1

m−1∏
i=0

Bi+j,n
u.c.p−→

∫ 1

0

(ps)
m
ds.

Proof. Consider the following quantity:

An =
1

n

n∑
j=1

m−1∏
i=0

Bi+j,n −
1

n

n∑
j=1

(pj−1,n)
m

=
1

n

n∑
j=1

[
Bj,nBj+1,n · · ·Bj+(m−1),n − (pj−1,n)

m]
,

We show that An
u.c.p−→ 0. To do so, we rewrite the quantity An as a sum of a Ftj,n-measurable quantity and a negligible

term. We introduce the following quantity:

ς
(m)
j,` = Bj,nBj+1,n · · ·Bj+`−1,n (Bj+`,n − pj−1,n) (pj−1,n)

m−`−1

and we show that An can be rewritten in the following way:

An =
1

n

n∑
j=m

m−1∑
`=0

ς
(m)
j−`,` +

Rn
n

(33)

where Rn/n is ANe. Let us consider the following expressions:

ψj,1 = Bj,n − pj−1,n
.
= ς

(1)
j,0

ψj,2 = Bj,nBj+1,n − p2
j−1,n = Bj,n (Bj+1,n − pj−1,n) + (Bj,n − pj−1,n) pj−1,n

.
= ς

(2)
j,1 + ς

(2)
j,0

ψj,3 = Bj,nBj+1,n (Bj+2,n − pj−1,n) + Bj,n (Bj+1,n − pj−1,n) pj−1,n + (Bj,n − pj−1,n) p2
j−1,n

.
= ς

(3)
j,2 + ς

(3)
j,1 + ς

(3)
j,0 ,
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and similarly for each fixed m. Then An = n−1
∑n
j=1 ψj,m becomes:

An =
1

n

n∑
j=1

m−1∑
`=0

ς
(m)
j,` =

1

n

n∑
j=m

m−1∑
`=0

ς
(m)
j,` +

1

n

m−1∑
j=1

m−1∑
`=0

ς
(m)
j,` =

1

n

n∑
j=m

m−1∑
`=0

ς
(m)
j−`,`+

1

n

n∑
j=m

m−1∑
`=0

(
ς
(m)
j,` − ς

(m)
j−`,`

)
︸ ︷︷ ︸

R1

+
1

n

m−1∑
j=1

m−1∑
`=0

ς
(m)
j,`︸ ︷︷ ︸

R2

.

We show now that both R1/n and R2/n are op (1). Because m is fixed, by the boundedness of the Bernoulli variables

we have R2/n = op (1). Now, considering that all the terms with ` = 0 in R1,n are identically zero, we get:

R1 =

m−1∑
`=1

n∑
j=m

(
ς
(m)
j,` − ς

(m)
j−`,`

)
=

m−1∑
`=1

 n∑
j=m

ς
(m)
j,` −

n∑
j=m

ς
(m)
j−`,`

 =

m−1∑
`=1

 n∑
j=m

ς
(m)
j,` −

n−∑̀
j=m−`

ς
(m)
j,`



=

m−1∑
`=1


n∑

j=n−`+1

ς
(m)
j,`︸ ︷︷ ︸

` addends

−
m−1∑
j=m−`

ς
(m)
j,`︸ ︷︷ ︸

`addends

 .

Therefore, as for R2, for given m the number of addends in R1 is independent of n (and bounded) so that R1/n = op (1).

Thus, by setting Rn
.
= R1 +R2 the decomposition in (33) hold; that is

An =
1

n

n∑
j=m

m−1∑
`=0

ς
(m)
j−`,` + op (1)

To conclude, we have to show that An is AN. Before proceeding, for the sake of clarity, we briefly describe how we achieve

this result. Let us set ζnj = 1
n ς

(m)
j−`,`, for fixed ` and m. We note that to prove the asymptotic negligibility of An, it is

sufficient to prove that ζnj is AN. By Lemma 1, this amounts showing that the following two conditions are satisfied

n∑
j=1

Ej−1

[
ζnj
]

=

n∑
j=1

1

n
Ej−1

[
ς
(m)
j−`,`

]
u.c.p−→ 0 (34)

and

n∑
j=1

Ej−1

[(
ζnj
)2] p−→ 0. (35)

In particular, to prove equation (34) we set ξnj = n−1Ej−1

[
ς
(m)
j−`,`

]
and by using Lemma 1 again, we show that

n∑
j=1

Ej−1

[
|ξnj |
] p−→ 0. (36)
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Therefore, we start from the assertion in (36) and we prove:

n∑
j=1

Ej−1

[∣∣ξnj ∣∣] =

n∑
j=1

Ej−1

[∣∣∣∣ 1nEj−1

[
ς
(m)
j−`,`

]∣∣∣∣] =

n∑
j=1

1

n

∣∣∣Ej−1

[
ς
(m)
j−`,`

]∣∣∣
=

n∑
j=1

1

n

∣∣∣Ej−1

[
Bj−`,n · ... · Bj−1,n (pj−`−1,n)

m−`−1
(Bj,n − pj−`−1,n)

]∣∣∣
=

n∑
j=1

1

n

∣∣∣Bj−`,n · ... · Bj−1,n (pj−`−1,n)
m−`−1 Ej−1 [(Bj,n − pj−`−1,n)]

∣∣∣
=

n∑
j=1

1

n

∣∣∣Bj−`,n · ... · Bj−1,n (pj−1,n)
m−`−1 Ej−1 [(pj,n − pj−l−1,n)]

∣∣∣
≤

n∑
j=1

1

n
Ej−1 [|pj,n − pj−`−1,n|] ≤

n∑
j=1

1

n
C∆1/2

n ≤ C∆1/2
n .

At this point, it is enough to prove the convergence in equation (35). This is an easy check because of the boundedness

of the Bernoulli variates, that is:

n∑
i=1

Ej−1

[(
ζnj
)2]

=
1

n2
Ej−1

[(
ς
(m)
j−`,`

)2
]
≤ K∆n −→ 0,

which implies the asymptotic negligibility of An. Finally, by Riemann integrability:

1

n

n∑
j=1

(pj−1,n)
m −→

∫ 1

0

(ps)
m
ds,

which completes the proof.

Before proceeding, we state and prove another useful lemma.

Lemma 4. Under Assumption 2, for any finite numbers `, d ≥ 0 and powers q1, . . . , qd ≥ 0, as n→∞,

1

n

n∑
j=1

Bj−`,n · · ·Bj,n (Ej−1 [Bj+1,n])
q1 · · · (Ej−1 [Bj+d,n])

qd p−→
∫ 1

0

p`+vs ds,

where v = q1 + . . .+ qd.

Proof. First, by Remark 30:

1

n

n∑
j=1

Bj−`,n · · ·Bj,n (Ej−1 [Bj+1,n])
q1 · · · (Ej−1 [Bj+d,n])

qd =
1

n

n∑
j=1

Bj−`,n · · ·Bj,n pvj−1,n +Op

(
∆1/2

)
.

Next, by conditioning on F (p)
∞ and using the law of iterated expectations:

E
[
Bj−`,n · · ·Bj,n pvj−1,n − pj−`,n . . . pj,n pvj−1,n

]
= 0.

Therefore, by Theorem 2.13 in Hall and Heyde (1980)11 applied to the martingale difference X
(`)
j,n = Bj−`,n · · · Bj,npvj−1,n−

11The hypothesis of the Theorem are readily satisfied because of the boundedness of the Bernoulli random variables
with Bn = n.
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pj−`,n · · · pj,npvj−1,n:

1

n

n∑
j=1

(
Bj−`,n · · ·Bj,n pvj−1,n − pj−`,n · · · pj,n pvj−1,n

) p−→ 0.

Using Remark (30) again:

1

n

n∑
j=1

pj−`,n . . . pj,n p
v
j−1,n =

1

n

n∑
j=1

p`+vj−1,n +Op

(
∆1/2

)
.

Finally, by Riemann integrability we have, path-wise on Ω:

1

n

n∑
j=1

p`+vj−1,n −→
∫ 1

0

p`+vs ds,

which completes the proof.

Lemma 5. Let m ≥ 2 be a given integer number. Under Assumption 2, as n→∞:

√
n

[
ITn −

∫ 1

0
ps ds

IT(m)
n −

∫ 1

0
(ps)

m
ds

]
stably
=⇒ MN

(
0,Σ(m)

)
, (37)

where

ITn =
1

n

n∑
j=1

Bj,n IT(m)
n =

1

n

n∑
j=1

m−1∏
i=0

Bj+i,n,

and MN (0,Σ(m)) denotes the mixed-normal distribution with covariance matrix Σ(m)

Σ(m) =

[ ∫ 1

0
ps (1− ps) ds

∫ 1

0
mpms (1− ps) ds∫ 1

0
mpms (1− ps) ds

∫ 1

0
pms

pms (2m+1)−pm+1
s (2m−1)−(1+ps)
1−ps ds

]
.

Proof. We consider the following decomposition:

√
n

[
ITn −

∫ 1

0
ps ds

IT(m)
n −

∫ 1

0
(ps)

m
ds

]
= A1 +A2,

where

A1 =
1√
n

n∑
j=1

 Bj,n − Ej−1 [Bj,n]
m−1∏
i=0

Bj+i,n −
m−1∏
i=0

Ej+i−1 [Bj+i,n]

 , A2 =
1√
n

n∑
i=1

 Ej−1 [Bj,n]−
∫ 1

0
ps ds

m−1∏
i=0

Ej+i−1 [Bj+i,n]−
∫ 1

0
(ps)

m
ds

 .
A2 is AN. Therefore, it is enough to prove that A1

stably
=⇒ MN (0,Σ). To do so, we rewrite the quantity A1 as a sum of a

Ftj,n-measurable quantity and a negligible term. We introduce the following quantity:

ζ
(m)
j,` = Bj,n Bj+1,n · · ·Bj+`−1,n (Bj+`,n − Ej+`−1 [Bj+`,n]) Ej+` [Bj+`+1,n] · · ·Ej+m−2 [Bj+m−1,n] ,

and we consider the following expression:

ϕj,m =

m−1∏
i=0

Bj+i,n −
m−1∏
i=0

Ej+i−1 [Bj+i,n]
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for a generic m. Note that ϕj,m =
∑m−1
`=0 ζ

(m)
j,` . Indeed:

ϕj,1 = Bj,n − Ej−1 [Bj,n] ≡ ζ(1)
j,0

ϕj,2 = Bj,n Bj+1,n − Ej−1 [Bj,n] Ej [Bj+1,n]

= Bj,n Bj+1,n − Bj,n Ej [Bj+1,n] + Bj,n Ej [Bj+1,n]− Ej−1 [Bj,n] Ej [Bj+1,n]

= Bj,n (Bj+1,n − Ej [Bj+1,n]) + Bj,n Ej [Bj+1,n]− Ej−1 [Bj,n] Ei [Bj+1,n]

= Bj,n (Bj+1,n − Ej [Bj+1,n])︸ ︷︷ ︸
ζ

(2)
j,1

+ (Bj,n − Ej−1 [Bj,n]) Ej [Bj+1,n]︸ ︷︷ ︸
ζ

(2)
j,0

ϕj,3 = Bj,n Bj+1,n Bj+2,n − Ej−1 [Bj,n] Ej [Bj+1,n] Ej+1 [Bj+2,n]

= Bj,n Bj+1,n Bj+2,n − Bj,n Bj+1,n Ej+1 [Bj+2,n] + Bj,n Bj+1,n Ej+1 [Bj+2,n]

− Ej−1 [Bj,n] Ej [Bj+1,n] Ej+1 [Bj+2,n]

= Bj,n Bj+1,n (Bj+2,n − Ej+1 [Bj+2,n]) +

+Bj,n Bj+1,n Ej+1 [Bj+2,n]− Bj,n Ei [Bj+1,n] Ej+1 [Bj+2,n] +

+Bj,n Ej [Bj+1,n] Ej+1 [Bj+2,n]− Ej−1 [Bj,n] Ei [Bj+1,n] Ej+1 [Bj+2,n]

= Bj,n Bj+1,n (Bj+2,n − Ej+1 [Bj+2,n])︸ ︷︷ ︸
ζ

(3)
i,2

+Bj,n (Bj+1,n − Ej [Bj+1,n]) Ej+1 [Bj+2,n]︸ ︷︷ ︸
ζ

(3)
j,1

+

+ (Bj,n − Ej−1 [Bj,n]) Ej [Bj+1,n] Ej+1 [Bj+2,n]︸ ︷︷ ︸
ζ

(3)
j,0

,

and so on for every m. Therefore, the second component of A1, A1 (2) = n−1/2
∑n

j=1 ϕj,m, can be rewritten

as:

A1 (2) =
1√
n

n∑
j=1

m−1∑
`=0

ζ
(m)
j,` =

1√
n

n∑
j=m

m−1∑
`=0

ζ
(m)
j,` +

m−1∑
j=1

m−1∑
`=0

ζ
(m)
j,`

=
1√
n

n∑
j=m

m−1∑
`=0

ζ
(m)
j−`,` +

1√
n

n∑
j=m

m−1∑
`=0

(
ζ

(m)
j,` − ζ

(m)
j−`,`

)
︸ ︷︷ ︸

R1

+
1√
n

m−1∑
j=1

m−1∑
`=0

ζ
(m)
j,`︸ ︷︷ ︸

R2

.

Reasoning as in Lemma 3, one can prove that both R1/
√
n and R2/

√
n are op (1). To render A1 (2)

Ftj,n-measurable, a further step is necessary. We define:

ζ̃
(m)
j−`,` = Bj−`,n Bj−`+1,n · · ·Bj−1,n (Bj,n − Ej−1 [Bj,n]) Ej−1 [Bj+1,n] · · ·Ej−1 [Bj+m−`−1,n] ,
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and consider:

R3 =

n∑
j=m

m−1∑
`=0

(
ζ

(m)
j−`,` − ζ̃

(m)
j−`,`

)

=
n∑

j=m

m−1∑
`=0

Bj−`,n Bj−`+1,n · · ·Bj−1,n (Bj,n − Ej−1 [Bj,n])×

× (Ej [Bj+1,n] · · ·Ej−`+m−2 [Bj−`+m−1,n]− Ej−1 [Bj+1,n] · · ·Ej−1 [Bj+m−`−1,n])

=

n∑
j=m

m−1∑
`=0

R3(`) =

m−1∑
`=0

n∑
j=m

R3(`), (38)

where for every ` ∈ {0, 1, . . . ,m− 1} we have:

R3(`) =
n∑

j=m

Bj−`,n Bj−`+1,n · · ·Bj−1,n (Bj,n − Ej−1 [Bj,n])×

× (Ej [Bj+1,n] · · ·Ej−`+m−2 [Bj−`+m−1,n]− Ej−1 [Bj+1,n] · · ·Ej−1 [Bj+m−`−1,n])

=

n∑
j=m

rj(`). (39)

Using Lemma 2, we show that 1√
n
R3(`) are AN ∀` ∈ {0, 1, . . . ,m− 1}. Notice that rk(`) is Ftj+m−`−2,n

-

measurable. Using the law of iterated expectations, we obtain:

Ej−1

[
1√
n
rj(`)

]
= 0. (40)

Now note that using the triangular inequality and a recursive decomposition for any set of bounded random

variables x1, . . . , xm−`−1, y1, . . . , ym−`−1 we obtain (to reduce notation we put M = m− `− 1):

|x1 · · ·xM − y1 · · · yM | = |x1 · · ·xM−1 (xM − yM ) + (x1 · · ·xM−1 − y1 . . . yM−1) yM |

≤ |x1 · · ·xM−1 (xM − yM )|+ |(x1 · · ·xM−1 − y1 · · · yM−1) yM |

≤ K |(xM − yM )|+K |(x1 · · ·xM−1 − y1 · · · yM−1)|

≤ . . .

≤ K
M∑
k=1

|xk − yk| ,

where the constant K changes from line to line. Applying this inequality to |rj(`)|, we obtain:

|rj(`)| ≤ K
m−`−1∑
i=1

|Ej−1 [Bj+i, n]− Ej+i−1 [Bj+i, n]| ≤ K∆1/2
n ,

where the last inequality follows from Remark 4. Then, because m and l are finite, we have:

n∑
j=m

Ej−1

[(
1√
n
rj(`)

)2
]
≤ K

n∑
j=m

1

n
Ej−1

(m−`−1∑
i=1

|Ej−1 [Bj+i, n]− Ej+i−1 [Bj+i, n]|

)2
→ 0. (41)
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Therefore, by Lemma 2, 1√
n
R3(`) are AN ∀` ∈ {0, 1, . . . ,m− 1}, which implies that R3 AN as well.

Now, decompose A1 as:

A1 =
1√
n

n∑
j=m

ηj +
1√
n
Rn =

1√
n

n∑
j=m

[
ηj(1)

ηj(2)

]
+

1√
n

[
Rn(1)

Rn(2)

]
,

with

ηj(1)
.
= Bj,n − Ej−1 [Bj,n] , ηj(2)

.
=

m−1∑
`=0

ζ̃
(m)
j−`,`,

and where the reminders are given by:

Rn(1) =

m−1∑
j=1

(Bj∆,n − Ej−1 [Bj∆,n]) , Rn(2) = R1 +R2 +R3.

Since the first component of Rn consists of a finite number of bounded terms and the second component of Rn

is the sum of AN terms, Rn/
√
n is AN. Therefore, it is enough to establish the following convergence:

1√
n

n∑
j=m

ηj
stably
=⇒ MN (0,ΣMIT) .

To establish the previous convergence, we use Corollary 2. We have to find two functions ϕ(1) and ϕ(2) such

that:

ηj (1) = ϕ(1) (Bj−m+1,n, . . . ,Bj,n,Ej−1 [Bj+1,n] , . . . ,Ej−1 [Bj+m−1,n])− Ej−1

[
ϕ(1) (Bj−m+1,n, . . . ,Bj,n,Ej−1 [Bj+1,n] , . . . ,Ej−1 [Bj+m−1,n])

]
and the same is necessary for ηj (2). The case of ηj (1) is trivial because it is enough to define ϕ(1) (x1)

.
= x1

to have the identity ηj (1) = ϕ(1) (Bj)− Ej−1

[
ϕ(1) (Bj)

]
. Concerning, ηj (2) note that:

ηj (2) =
m−1∑
`=0

ζ̃
(m)
j−`,` =

m−1∑
`=0

Bj−`,n Bj−`+1,n · · ·Bj−1,n (Bj,n − Ej−1 [Bj,n]) Ej−1 [Bj+1,n] · · ·Ej−1 [Bj+m−`−1,n]

= (Bj,n − Ej−1 [Bj,n]) Ej−1 [Bj+1,n] · · ·Ej−1 [Bj+m−1,n] +

+Bj−1,n (Bj,n − Ej−1 [Bj,n]) Ej−1 [Bj+1,n] · · ·Ej−1 [Bj+m−2,n] + . . .

+Bj−m+1,n Bj−m+2,n · · ·Bj−1,n (Bj,n − Ej−1 [Bj,n])

= Bj,n Ej−1 [Bj+1,n] · · ·Ej−1 [Bj+m−1,n] + Bj−1,n Bj,n Ej−1 [Bj+1,n] · · ·Ej−1 [Bj+m−2,n] + . . .

+Bj−m+1,n Bj−m+2,n · · ·Bj−1,n Bj,n − (Ej−1 [Bj,n] Ej−1 [Bj+1,n] · · ·Ej−1 [Bj+m−1,n]) + . . .

+Bj−m+1,n Bj−m+2,n · · ·Bj−1,n Ej−1 [Bj,n]

= ϕ(2) (Bj−m+1,n, . . . ,Bj,n,Ej−1 [Bj+1,n] , . . . ,Ej−1 [Bj+m−1,n])

− Ej−1

[
ϕ(2) (Bj−m+1,n, . . . ,Bj,n,Ej−1 [Bj+1,n] , . . . ,Ej−1 [Bj+m−1,n])

]
where ϕ(2) : R2 (m−1)+1 → R takes the following form:

ϕ(2)
(
x1, · · · , xm, · · · , x2(m−1)+1

) .
= xm xm+1 · · ·x2(m−1)+1 + xm−1 xm · · ·x2(m−1) + . . .+ x1 x2 · · ·xm.
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We now proceed by noticing that for all j the vector ηj is Ftj,n-measurable and bounded, where:

n∑
j=m

Ej−1

[∥∥∥∥ 1√
n
ηj

∥∥∥∥4
]

p−→ 0,

and Ej−1 [ηj (1)] = 0. To also see that Ej−1 [ηj (2)] = 0, it is better to write down Ej−1 [ηj (2)] explicitly:

Ej−1 [ηj (2)] =

m−1∑
`=0

Ej−1

[
ζ̃

(m)
j−`,`

]
=

m−1∑
`=0

Bj−`,n Bj−`+1,n · · ·Bj−1,n Ej−1 [(Bj,n − Ej−1 [Bj,n])]︸ ︷︷ ︸
=0

Ej−1 [Bj+1,n] Ej−1 [Bj+2,n] · · ·Ej−1 [Bj−`+m−1,n] .

Consequently, it is enough to show that n−1
n∑

i=m
Ej−1

[
ηjη
′
j

]
p−→ Σ. Consider each component of the matrix

ηjη
′
j separately.

ηj(1)ηj(1) = Bj,n − 2Bj,nEj−1 [Bj,n] + (Ej−1 [Bj,n])2 .

By Lemma 4,

1

n

n∑
i=m

Ei−1 [ηi(1)ηi(1)]
p−→
∫ 1

0

(
ps − p2

s

)
ds.

Now consider the product:

ηj(2) ηj(2) =

m−1∑
`=0

(
ζ̃

(m)
j−`,`

)2
+ 2

m−1∑
`=0

m−1∑
`′=`+1

ζ̃
(m)
j−`,` ζ̃

(m)
j−`′,`′ =

m−1∑
`=0

(
ζ̃

(m)
j−`,`

)2
+ 2

m−1∑
`=0

m−`−1∑
k=1

ζ̃
(m)
j−`,` ζ̃

(m)
j−`−k,`+k.

We note that :(
ζ̃

(m)
j−`,`

)2
= Bj−`,n · · ·Bj−1,n︸ ︷︷ ︸

` factors

(Bj,n − Ej−1 [Bj,n])2 (Ej−1 [Bj+1,n] · · ·Ej−1 [Bj+m−`−1,n])2︸ ︷︷ ︸
m− `− 1 factors

and

ζ̃
(m)
j−`,` ζ̃

(m)
j−`−k,`+k

= Bj−`,n Bj−`+1,n · · ·Bj−1,n (Bj,n − Ej−1 [Bj,n]) Ej−1 [Bj+1,n] · · ·Ej−1 [Bj+m−`−1,n]×

×Bj−`−k,n Bj−`−k+1,n · · ·Bj−`,n · · ·Bj−1,n (Bj,n − Ej−1 [Bj,n]) Ej−1 [Bj+1,n] · · ·Ej−1 [Bj+m−`−k−1,n]

= Bj−`−k,n...Bj−1,n︸ ︷︷ ︸
`+ k factors

(Bj,n − Ej−1 [Bj,n])2 ×

(Ej−1 [Bj+1,n] · · ·Ej−1 [Bj+m−`−k−1,n])2︸ ︷︷ ︸
m− (`+ k)− 1 factors

Ej−1 [Bj+m−`−k,n] · · ·Ej−1 [Bj+m−`−1,n]︸ ︷︷ ︸
k factors

.

Consequently, using Lemma 4:

1

n

n∑
j=m

Ej−1 [ηj(2)ηj(2)]
p−→ Σ22

.
=

∫ 1

0

(
m−1∑
`=0

p2m−`−1
s (1− ps) + 2

m−1∑
`=0

(m− `− 1) p2m−`−1
s (1− ps)

)
ds,
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which, after some standard algebra becomes:

Σ22 =

∫ 1

0
p2m−1
s (1− ps)

(
m−1∑
`=0

p−`s + 2
m−1∑
`=0

(m− `− 1) p−`s

)
ds

=

∫ 1

0

pms (1 + ps − (2m(1− ps) + 1 + ps)p
m
s )

1− ps
ds

=

∫ 1

0
pms

pms (2m+ 1)− pm+1
s (2m− 1)− (1 + ps)

1− ps
ds. (42)

Finally:

ηj(1)ηj(2) = (Bj,n − Ej−1 [Bj,n])2 Ej−1 [Bj+1,n] ...Ej−1 [Bj+m−1,n]

+ Bj−1,n (Bj,n − Ej−1 [Bj,n])2 Ej−1 [Bj+1,n] ...Ej−1 [Bj+m−2,n]

+ . . .

+ Bj−m−1,n...Bj−1,n (Bj,n − Ej−1 [Bj,n])2 .

Applying Lemma 4 again:

1

n

n∑
j=m

Ej−1 [ηj(1)ηj(2)]
p−→
∫ 1

0
mpms (1− ps) ds,

which completes the proof.

A.3 Proofs of Theorems 3.3 and 3.4 from Section 3.2

For an arbitrary sequence of integers kn such that kn →∞ and kn∆n = kn
n → 0, let:

αnj
.
=

1

kn

kn−1∑
i=0

(Bj+i,n − pj+i,n) , βnj
.
=

1

kn

kn−1∑
i=0

(pj+i,n − pj−1,n) ,

and set hn = n− kn. Note that:

p̂j (kn)− pj−1,n = αnj + βnj , j ∈ {1, . . . , hn + 1} .

The auxiliary results for the proofs of Theorems 3.3 and 3.4 are summarized by the following Lemma.
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Lemma 6. Under Assumptions 1, 2, and 3, for C > 0 and for all q ≥ 2, we have:

Ej−1

[
sup

s∈[0,∆n]

|pj−1+s,n − pj−1,n|q
]
≤ C ·∆1∧(q/2)

n (43)

|Ej−1 [pj,n − pj−1,n]| ≤ C ·∆n (44)∣∣Ej−1

[
βnj
]∣∣ ≤ C · kn∆n (45)

Ej−1

[∣∣βnj ∣∣q] ≤ C · (kn∆n)
q/2

(46)∣∣Ej−1

[
αnj
]∣∣ = 0 (47)

Ej−1

[∣∣αnj ∣∣q] ≤ Ck−q/2n (48)∣∣∣∣Ej−1

[
(αni )

2 − 1

kn
pi−1,n (1− pj−1,n)

]∣∣∣∣ ≤ C ·∆n (49)∣∣Ej−1

[
αnj β

n
j

]∣∣ = 0 (50)

Proof. The proof of (43)-(47) follows the same arguments as in the proof of the results of Appendix A and Lemma B-4

of Aı̈t-Sahalia and Jacod (2012). To complete the proof of the Lemma, we need to prove (47)-(50). Equality (47) easily

follows by conditioning on the path of the process pt.

∣∣Ej−1

[
αnj
]∣∣ =

∣∣∣∣∣∣ 1

kn

kn−1∑
j=0

Ej−1 [Bj+i,n − pj+i,n]

∣∣∣∣∣∣ = 0.

To prove the other relationships, we first observe that conditioning on the path (pt)t∈[0,1] we have:

Ei−1

[(
αnj
)2]

=
1

k2
n

Ej−1

[
kn−1∑
i=0

(Bj+i,n − pj+i,n)
2

]
+

2

kn
Ej−1

[
kn−2∑
i=0

kn−1−i∑
m=1

(Bj+i,n − pj+i,n) (Bj+i+m,n − pj+i+m,n)

]

=
1

k2
n

kn−1∑
i=0

Ej−1

[
(Bj+i,n − pj+i,n)

2
]

=
1

k2
n

kn−1∑
i=0

Ej−1 [pj+i,n (1− pj+i,n)] ≤ C

kn
,

(51)

where the last inequality is due to the fact that pt ∈ (0, 1). Moreover, we have:

Ej−1

[(
αnj
)2 − 1

kn
pj−1,n(1− pj−1,n)

]
=

1

k2
n

kn−1∑
i=0

Ej−1 [pj+i,n − pj−1,n]− 1

k2
n

kn−1∑
i=0

Ej−1

[
p2
j+i,n − p2

j−1,n

]
.

By applying triangular inequality, we obtain:

∣∣∣∣Ej−1

[(
αnj
)2 − 1

kn
pj−1,n(1− pj−1,n)

]∣∣∣∣ ≤ 1

k2
n

kn−1∑
i=0

|Ej−1 [pj+i,n − pj−1,n]|+ 1

k2
n

kn−1∑
i=0

∣∣Ej−1

[
p2
j+i,n − p2

j−1,n

]∣∣ .
Therefore, (49) follows from (44), whereas (48) follows from Hölder’s inequality and (51). Finally, (50) is obtained by

conditioning on the path (pt)t∈[0,1] and by using equation (47).

Proof of Theorem 3.3. For any t > 0, define a function of t, p̂(kn, t), as:

p̂(kn, t)
.
= p̂j(kn), t ∈ ((j − 2)∆n, (j − 1)∆n].

First, we prove that p̂(kn, t) converges in probability to pt for every t ∈ [0, 1]. For any t ∈ [0, 1] and jt such that
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t ∈ ((jt − 2)∆n, (jt − 1)∆n], we have:

(j + 1)∆n ≤ (jt + j)∆n − t ≤ (j + 2)∆n.

Second, we have:

E
[
(p̂(kn, t)− pt)2

]
= E

( 1

kn

kn−1∑
i=0

(Bjt+i,n − pt)

)2
 = E

 1

k2
n

kn−1∑
i=0

(Bjt+i,n − pt)
2

+
1

k2
n

∑
i6=i′

(Bjt+i,n − pt) (Bjt+i′,n − pt)


= E

[
1

k2
n

kn−1∑
i=0

(Bjt+i,n − pt)
2

]
+ E

 1

k2
n

∑
i 6=i′

(Bjt+i,n − pt) (Bjt+i′,n − pt)

 .
The first of the two terms converges to zero by the boundedness of Bjt+i,n and pt. Concerning the second by

conditioning on (pt)t∈[0,1] and (44) we have that

|E [(Bjt+i,n − pt) (Bjt+i′,n − pt)]| =
∣∣E [p(jt+i)∆n

− pt
]
E
[
p(jt+i′)∆n

− pt
]∣∣ ≤ C(kn∆n)2.

Therefore, ∣∣∣∣∣∣E
 1

k2
n

∑
j 6=j′

(Bit+j,n − pt) (Bit+j′,n − pt)

∣∣∣∣∣∣ ≤ C(kn∆n)2 −→ 0.

Thus, p̂(kn, t)
p−→ pt for each t ∈ [0, 1]. Now, we write U (∆n, f)

n
as:

U (∆n, f)
n

= ∆nf(p̂1(kn)) +

hn∆n∫
0

f(p̂(kn, t)) ds.

and we compute:

E
[∣∣∣∣U (∆n, f)

n −
∫ 1

0

f(ps) ds

∣∣∣∣] = ∆n E
[∣∣∣∣f(p̂1(kn))−

∫ 1

0

f(ps) ds

∣∣∣∣]+

hn∆n∫
0

as ds

= ∆n E
[∣∣∣∣∫ 1

0

(f(p̂1(kn))− f(ps)) ds

∣∣∣∣]+

hn∆n∫
0

as ds

≤ ∆n E
[∫ 1

0

|(f (p̂1 (kn))− f(ps))| ds
]

+

hn∆n∫
0

as ds

≤ C ∆n +

hn∆n∫
0

an(s) ds,

where an(s)
.
= E [|f(p̂(kn, s))− f(ps)|], C is a suitable constant, and we used the locally boundedness of f(·) and the

boundedness of ps and p̂(kn, s). By the continuous mapping theorem, condition p̂(kn, t)
p−→ pt implies that for a given

s ∈ [0, 1]:

f(p̂(kn, s))
p−→ f(ps). (52)

Nonetheless, because the sequence of random variables f(p̂(kn, s)) is uniformly integrable (again using the locally bound-

edness of f(·) and the boundedness of p̂(kn, s)) the convergence in equation (52) is also in L1 norm and therefore

an(s) −→ 0 for each s. In addition, because an(s) is uniformly bounded in (n, s), U (∆n, f)
n u.c.p.−→

∫ 1

0
f (ps) ds by the

dominated convergence theorem (cfr. Jacod and Protter, 2012, Theorem 9.4.1).
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Proof of Theorem 3.4. First, consider the following decomposition:

1√
∆n

(U ′ (∆n, f)
n − U (f)) =

√
∆n

hn+1∑
j=1

(
f (p̂j (kn))− 1

2 kn
f ′′ (p̂j (kn)) p̂j (kn) (1− p̂j (kn))

)
− 1√

∆n

∫ 1

0

f (ps) ds

=

4∑
r=1

U (r)
n
,

with

U (1)
n

=
1√
∆n

hn+1∑
j=1

∫ j∆n

(j−1)∆n

(f (pj−1,n)− f (ps)) ds−
1√
∆n

∫ 1

(hn+1) ∆n

f (ps) ds

U (2)
n

=
√

∆n

hn+1∑
j=1

f ′ (pj−1,n)βnj

U (3)
n

=
√

∆n

hn+1∑
j=1

(
f (p̂j (kn))− f (pj−1,n)− f ′ (pj−1,n)

(
αnj + βnj

)
− 1

2 kn
f ′′ (p̂j (kn)) p̂j (kn) (1− p̂j (kn))

)

U (4)
n

=
√

∆n

hn+1∑
j=1

f ′ (pj−1,n)αnj .

At this point, the rest of the proof is divided into four parts. In the first three, we prove that U (k)
n
, k = 1, 2, 3, is AN,

whereas in the last part we show that U(4)n
stably
=⇒ MN (0,Σ).

Part 1: Proof of the AN of U (1)
n

Remember that hn = n− kn and that n = 1/∆n, where 1− (hn + 1) ∆n = 1− (n− kn + 1) ∆n = kn ∆n −∆n. Because

f(ps) is bounded, for the second term of U(1)n we have:∣∣∣∣∣∣∣
1√
∆n

1∫
(hn+1) ∆n

f (ps) ds

∣∣∣∣∣∣∣ ≤ Ckn
√

∆n −→ 0.

The first term of U(1)n1 can be expressed as
hn+1∑
j=1

ξnj , where:

ξnj =
1√
∆n

∫ j∆n

(j−1)∆n

(f (pj−1,n)− f (ps)) ds.

Because the process f(pt) is a bounded semimartingale, by using inequality (44) we get:

∣∣E [ξnj ]∣∣ =
1√
∆n

∣∣∣∣∣E
[∫ j∆n

(j−1)∆n

(f (pj−1,n)− f (ps)) ds

]∣∣∣∣∣ =
1√
∆n

∣∣∣∣∣
∫ j∆n

(j−1)∆n

E [Ej−1 [(f (pj−1,n)− f (ps))] ds]

∣∣∣∣∣
≤ 1√

∆n

∫ j∆n

(j−1)∆n

|E [Ej−1 [(f (pj−1,n)− f (ps))]]| ds ≤
1√
∆n

∫ j∆n

(j−1)∆n

E [|Ej−1 [(f (pj−1,n)− f (ps))]|] ds

≤ C√
∆n

∆2
n = C (∆n)

3/2 −→ 0,
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while using inequality (43) and Holder’s inequality, we obtain:

E
[∣∣ξnj ∣∣2] =

1

∆n
E

(∫ j∆n

(j−1)∆n

(f (pj−1,n)− f (ps)) ds

)2


=
1

∆n
E

 j∆n∫
(j−1)∆n

j∆n∫
(j−1)∆n

(f(pj−1,n)− f(pq)) (f(pj−1,n)− f(ps)) ds dq


=

1

∆n

j∆n∫
(j−1)∆n

j∆n∫
(j−1)∆n

E [(f(pj−1,n)− f(pq)) (f(pj−1,n)− f(ps))] ds dq

≤ 1

∆n

j∆n∫
(j−1)∆n

j∆n∫
(j−1)∆n

√
E
[
|f(pj−1,n)− f(pq)|2

]
E
[
|f(pj−1,n)− f(ps)|2

]
ds dq

≤ 1

∆n

j∆n∫
(j−1)∆n

j∆n∫
(j−1)∆n

C ∆n ds dq ≤ C ∆2
n −→ 0.

Consequently, by Lemma 2, U(1)n is AN.

Part 2: Proof of the AN of U (2)
n

Using Lemma 6 and the boundedness of f ′ (pj−1,n), we obtain:

hn+1∑
j=1

∣∣∣Ej−1

[√
∆nf

′ (pj−1,n)βnj

]∣∣∣ ≤ C hn+1∑
j=1

√
∆n

∣∣Ej−1

[
βnj
]∣∣ ≤ C hn+1∑

j=1

kn (∆n)
3/2 −→ 0

and

hn+1∑
j=1

Ej−1

[∣∣∣√∆nf
′ (pj−1,n)βnj

∣∣∣2] ≤ C hn+1∑
j=1

Ej−1

[
∆n

∣∣βnj ∣∣2] ≤ C hn+1∑
j=1

kn (∆n)
2

= C (n− kn) kn ∆2
n ≤ C kn ∆n −→ 0,

and so

kn

hn+1∑
j=1

E
[∣∣∣√∆nf

′ (pj−1,n)βnj

∣∣∣2] ≤ C k2
n ∆n −→ 0.

Consequently, by applying Lemma 2 we get that U(2)n is AN.

Part 3: Proof of the AN of U (3)
n

As a first step, we rewrite U (3)
n

as U(3)n =
hn+1∑
j=1

4∑
k=1

vnj (k) with vjn (k), k = 1, . . . , 4, suitably defined triangular arrays.

To do so, we remind readers that:

αnj + βnj =
1

kn

kn−1∑
i=0

(Bj+i,n − pj−1,n) = p̂j (kn)− pj−1,n.

Using Taylor expansion of f (p) around p0 = pj−1,n and computing the expansion in p = p̂j (kn), we obtain:

f (p̂j (kn))− f (pj−1,n)− f ′ (pj−1,n)
(
αnj + βnj

)
=

1

2
f ′′ (pj−1,n)

(
αnj + βnj

)2
+

1

6
f ′′′
(
p?j
) (
αnj + βnj

)3
,
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where p?j is a point between pj−1,n and pj−1,n + αnj + βnj . We then have:

1

2
f ′′ (pj−1,n)

(
αnj + βnj

)2
=

1

2
f ′′ (pj−1,n)

(
(αnj )2 + 2αnj β

n
j −

1

kn
pj−1,n(1− pj−1,n)

)
+

1

2 kn
f ′′ (pj−1,n) pj−1,n(1− pj−1,n) +

1

2
f ′′ (pj−1,n)

(
βnj
)2
.

Consequently, U(3)n can be represented as U(3)n =
hn+1∑
j=1

4∑
k=1

vnj (k), where:

vnj (1) =

√
∆n

2
f ′′ (pj−1,n)

(
(αnj )2 + 2αnj β

n
j −

1

kn
pj−1,n(1− pj−1,n)

)
,

vnj (2) =

√
∆n

2 kn
f ′′ (pj−1,n) pj−1,n(1− pj−1,n)−

√
∆n

2 kn
f ′′ (p̂j (kn)) p̂j (kn) (1− p̂j (kn)) ,

vnj (3) =

√
∆n

2
f ′′ (pj−1,n)

(
βnj
)2
,

vnj (4) =

√
∆n

6
f ′′′
(
p?j
) (
αnj + βnj

)3
.

We have to prove that all the triangular arrays vnj (k) are AN for k = 1, 2, 3, 4. First, consider vni (1). Inequalities (49)

and (50) imply that
∣∣Ej−1

[
vnj (1)

]∣∣ ≤ C ∆
3/2
n , and so:

hn+1∑
j=1

∣∣Ej−1

[
vnj (1)

]∣∣ ≤ C ∆1/2
n

p−→ 0. (53)

In addition,

vnj (1)2 =
∆n

4
f ′′ (pj−1,n)

2
(

(αnj )4 + 4
(
αnj β

n
j

)2
+

1

k2
n

p2
j−1,n(1− pj−1,n)2 +

+4
(
αnj
)3
βnj − 2

(αnj )2

kn
pj−1,n(1− pj−1,n)−

4αnj β
n
j

kn
pj−1,n(1− pj−1,n)

)
≤ ∆n

4
f ′′ (pj−1,n)

2
(

(αnj )4 + 4
(
αnj β

n
j

)2
+

1

k2
n

p2
j−1,n(1− pj−1,n)2 +

+4
∣∣∣(αnj )3 βnj ∣∣∣+ 2

(αnj )2

kn
pj−1,n(1− pj−1,n)−

4αnj β
n
j

kn
pj−1,n(1− pj−1,n)

)
.

Now, in computing E
[
vnj (1)2

]
we consider that:

• Inequality (48) implies that:

Ej−1

[
(αnj )4

]
≤ C k−2

n ,

and that

Ej−1

[
(αnj )2

kn
pj−1,n(1− pj−1,n)

]
≤ C k−2

n .

• Cauchy-Schwartz inequality plus (48) and (46) imply that:

Ej−1

[(
αnj β

n
j

)2] ≤ (Ej−1

[(
αnj
)4])1/2 (

Ej−1

[(
βnj
)4])1/2

≤ C ∆n

and that ∣∣∣Ej−1

[(
αnj
)3
βnj

]∣∣∣ ≤ (Ej−1

[(
αnj
)6])1/2 (

Ej−1

[(
βnj
)2])1/2

≤ C k−1
n ∆1/2

n .

• Equation (50) implies Ej−1

[
αnj β

n
j knpj−1,n(1− pj−1,n)

]
= 0.
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Summing up:

Ej−1

[
vnj (1)2

]
≤ C ∆n

(
1

k2
n

+ ∆n +

√
∆n

kn

)
where:

kn

hn∑
j=1

E
[
vnj (1)2

]
−→ 0. (54)

Summing up, the limits in (53) and (54) imply, through Lemma 2, that vnj (1) is AN. Now, consider vnj (4). Because both

pt and p̂i(kn) are in [0, 1], |f ′′′(p?i )| ≤ C for some constant C > 0 we therefore have:

hn+1∑
j=1

∣∣∣∣√∆n

6
f ′′′
(
p?j
) (
αnj + βnj

)3∣∣∣∣ ≤ C hn+1∑
j=1

√
∆n

∣∣∣(αnj + βnj
)3∣∣∣ = C

hn+1∑
j=1

√
∆n

(∣∣αnj ∣∣3 + 3
∣∣αnj ∣∣ ∣∣βnj ∣∣2 + 3

∣∣αnj ∣∣2 ∣∣βnj ∣∣+
∣∣βnj ∣∣3) .

Using estimates from the preliminary results and Cauchy-Schwartz inequality, we have the following implications.

• inequality (48) implies:
hn+1∑
j=1

√
∆nEj−1

[∣∣αnj ∣∣3] ≤ C · k−3/2
n (∆n)−1/2 p−→ 0,

• inequalities (48) and (46), and Cauchy-Schwartz, imply:

hn+1∑
j=1

√
∆nEj−1

[∣∣αnj ∣∣2 ∣∣βnj ∣∣] ≤ C hn+1∑
j=1

√
∆n

√
Ej−1

[∣∣αnj ∣∣4]Ej−1

[∣∣βnj ∣∣2] ≤ C k−1/2
n

p−→ 0

and
hn+1∑
j=1

√
∆nEj−1

[∣∣αnj ∣∣ ∣∣βnj ∣∣2] ≤ C hn+1∑
j=1

√
∆n

√
Ej−1

[∣∣αnj ∣∣2]Ej−1

[∣∣βnj ∣∣4] ≤ C · (kn ∆n)
1/2 p−→ 0.

• Inequality (46) implies:
hn+1∑
j=1

√
∆nEj−1

[∣∣βnj ∣∣3] ≤ C · k3/2
n ∆n

p−→ 0.

Therefore:
hn+1∑
j=1

∣∣Ej−1

[
vnj (4)

]∣∣ p−→ 0. (55)

Now consider:

hn+1∑
j=1

vnj (4)
2 ≤ C

hn+1∑
j=1

∆n

( ∣∣αnj ∣∣6 + 9
∣∣αnj ∣∣2 ∣∣βnj ∣∣4 + 9

∣∣αnj ∣∣4 ∣∣βnj ∣∣2 +
∣∣βnj ∣∣6 + 6

∣∣αnj ∣∣4 ∣∣βnj ∣∣2 +

+ 6
∣∣αnj ∣∣5 ∣∣βnj ∣∣+ 2

∣∣αnj ∣∣3 ∣∣βnj ∣∣3 + 18
∣∣αnj ∣∣3 ∣∣βnj ∣∣3 + 6

∣∣αnj ∣∣ ∣∣βnj ∣∣5 + 6
∣∣αnj ∣∣2 ∣∣βnj ∣∣4 ).

= C

hn+1∑
j=1

∆n

( ∣∣αnj ∣∣6 + 15
∣∣αnj ∣∣2 ∣∣βnj ∣∣4 + 15

∣∣αnj ∣∣4 ∣∣βnj ∣∣2 +
∣∣βnj ∣∣6 + 6

∣∣αnj ∣∣5 ∣∣βnj ∣∣+ 20
∣∣αnj ∣∣3 ∣∣βnj ∣∣3 + 6

∣∣αnj ∣∣ ∣∣βnj ∣∣5 ).
inequalities (48) and (46), respectively, imply:

kn

hn+1∑
j=1

∆nE
[∣∣αnj ∣∣6] ≤ C k−2

n −→ 0,
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kn

hn+1∑
j=1

∆nE
[∣∣βnj ∣∣6] ≤ C (k4/3

n ∆n

)3

−→ 0,

and, using also Cauchy-Schwartz, they imply:

kn

hn+1∑
j=1

∆nE
[∣∣αnj ∣∣2 ∣∣βnj ∣∣4] ≤ C (kn ∆n)

2 −→ 0

kn

hn+1∑
j=1

∆nE
[∣∣αnj ∣∣4 ∣∣βnj ∣∣2] ≤ C k−2

n ∆n −→ 0

kn

hn+1∑
j=1

∆nE
[∣∣αnj ∣∣5 ∣∣βnj ∣∣] ≤ C k−1

n ∆1/2
n −→ 0

kn

hn+1∑
j=1

∆nE
[∣∣αnj ∣∣ ∣∣βnj ∣∣5] ≤ C (k6/5

n ∆n

)5/2

−→ 0

kn

hn+1∑
j=1

∆nE
[∣∣αnj ∣∣3 ∣∣βnj ∣∣3] ≤ C (k2/3

n ∆n

)3/2

−→ 0.

Consequently:

kn

hn+1∑
j=1

E
[
vnj (4)

2
]
−→ 0. (56)

As before, the limits in (55) and (56) imply, through Lemma 2, that vnj (4) is AN. Similarly, for vnj (3) we have:

hn+1∑
j=1

Ej−1

[∣∣∣∣√∆n

2
f ′′ (pj−1,n)

(
βnj
)2∣∣∣∣] ≤ C · kn√∆n

p−→ 0, (57)

In addition:

kn

hn+1∑
j=1

E
[∣∣∣∣∆n

4
(f ′′ (pj−1,n))

2 (
βnj
)4∣∣∣∣] ≤ C · (k3/2

n ∆n

)2

−→ 0, (58)

Therefore, the limits in (57) and (58) imply, through Lemma 2, that vnj (3) is AN. Finally, consider vnj (2). Using Taylor’s

expansion, we have (remember that p̂j(kn)− pj−1,n = αnj + βnj ):

f ′′ (p̂j(kn)) = f ′′ (pj−1,n) + f ′′′
(
p?j
) (
αnj + βnj

)
.
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Consequently, vnj (2) takes the form:

vnj (2) =

√
∆n

2 kn
f ′′ (pj−1,n) p(j−1)∆n

(1− p(j−1)∆n
)−
√

∆n

2 kn
f ′′ (p̂j (kn)) p̂j (kn) (1− p̂j (kn))

=

√
∆n

2 kn
f ′′ (pj−1,n) p(j−1)∆n

(1− p(j−1)∆n
)−
√

∆n

2 kn

(
f ′′ (pj−1,n) + f ′′′

(
p?j
) (
αnj + βnj

))
p̂j (kn) (1− p̂j (kn))

=

√
∆n

2 kn
f ′′ (pj−1,n) p(j−1)∆n

−
√

∆n

2 kn
f ′′ (pj−1,n) p2

(j−1)∆n

−
√

∆n

2 kn
f ′′ (pj−1,n) p̂j (kn) +

√
∆n

2 kn
f ′′ (pj−1,n) p̂j (kn)

2 −
√

∆n

2 kn
f ′′′
(
p?j
) (
αnj + βnj

)
p̂j (kn) (1− p̂j (kn))

= −
√

∆n

2 kn
f ′′ (pj−1,n) (p̂j(kn)− pj−1,n) +

√
∆n

2 kn
f ′′ (pj−1,n)

(
p̂j(kn)2 − p2

j−1,n

)
−
√

∆n

2 kn
f ′′′
(
p?j
) (
αnj + βnj

)
p̂j (kn) (1− p̂j (kn))

= −
√

∆n

2 kn
f ′′ (pj−1,n)

(
αnj + βnj

)
︸ ︷︷ ︸

Aj,n

+

√
∆n

2 kn
f ′′ (pj−1,n)

(
p̂j(kn)2 − p2

j−1,n

)
︸ ︷︷ ︸

Bj,n

−
√

∆n

2 kn
f ′′′
(
p?j
) (
αnj + βnj

)
p̂j (kn) (1− p̂j (kn))︸ ︷︷ ︸

Cj,n

.

Using Lemma 6, we have:

hn∑
j=1

∣∣∣∣Ej−1

[√
∆n

kn
f ′′
(
p(j−1)∆n

)
αnj

]∣∣∣∣ = 0,

kn

hn∑
j=1

E
[

∆n

k2
n

(
f ′′
(
p(j−1)∆n

))2 ∣∣αnj ∣∣2] ≤ C k−2
n ,

hn∑
j=1

∣∣∣∣Ej−1

[√
∆n

kn
f ′′
(
p(j−1)∆n

)
βnj

]∣∣∣∣ ≤ C ∆1/2
n ,

kn

hn∑
j=1

E
[

∆n

k2
n

(
f ′′
(
p(j−1)∆n

))2 ∣∣βnj ∣∣2] ≤ C ∆n,

which imply, through Lemma 2, that Aj,n is AN. Now because

Bj,n =

√
∆n

2 kn
f ′′ (pj−1,n)

(
αnj + βnj

)
(p̂j(kn) + pj−1,n) = Aj,n (p̂j(kn) + pj−1,n)

and being (p̂j(kn) + pj−1,n) bounded, we can apply to Bj,n the same reasoning used for Aj,n, ; therefore, Bj,n is AN. An

identical reasoning applies to Cj,n, which is then AN as well.

Part 4: Proof of the convergence Un (4)
stably
=⇒ MN (0,Σ)

Recall that U(4)n is defined as:

U (4)
n

=

√
∆n

kn

hn+1∑
j=1

f ′ (pj−1,n)

kn−1∑
i=0

Bj+i,n.

For the sake of readability define, , we temporarily define the variables:

aj−1 = f ′ (pj−1,n) ,Bj+i = Bj+i,n − pj+i,n
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so that:

U (4)
n

=

√
∆n

kn

n−kn+1∑
j=1

aj−1

kn−1∑
i=0

Bj+i.

The convolution of summation in U (4)
n

can be rewritten as:

n−kn+1∑
j=1

aj−1

kn−1∑
i=0

Bj+i = a0 (B1 + B2 + · · ·+ Bkn) + a1 (B2 + B3 + · · ·+ Bkn+1) + · · ·

· · · +akn−1 (Bkn + Bkn+1 + · · ·+ B2 kn−1) + akn (Bkn+1 + Bkn+2 + · · ·+ B2 kn) + · · ·

· · · +an−kn−1 (Bn−kn + Bn−kn+1 + · · ·+ Bn−1) + an−kn (Bn−kn+1 + Bn−kn+1 + · · ·+ Bn)

= B1 a0 + B2 (a0 + a1) + B3 (a0 + a1 + a2) + · · ·+ Bkn (a0 + a1 + a2 + . . .+ akn−1)

+ Bkn+1 (a1 + a2 + a3 + . . .+ akn) + Bkn+2 (a2 + a3 + a4 + . . .+ akn+1) + · · ·

+ Bn−kn+1 (an−2 kn+1 + an−2 kn+1 + . . .+ an−kn)

+ Bn−kn+2 (an−2 kn+2 + an−2 kn+3 + . . .+ an−kn) + · · ·+ Bn−1 (an−kn−1 + an−kn) + Bn an−kn

=

kn∑
j=1

Bj
j−1∑
i=0

ai +

n−kn+1∑
j=kn+1

Bj
j−1∑
i=j−k

ai +

n∑
j=n−kn+1

Bj
n−kn∑
i=j−kn

ai

(i→ j − i− 1) =

kn∑
j=1

Bj
i−1∑
j=0

aj−i−1 +

n−kn+1∑
j=kn+1

Bj
kn−1∑
i=0

aj−i−1 +

n∑
j=n−kn+1

Bj
kn−1∑

i=j−n+kn−1

aj−i−1

=

n∑
j=1

(j−1)∧(kn−1)∑
i=j−n+kn−1∨0

aj−i−1Bj .

Hence,

U (4)
n

=
√

∆n

n∑
j=1

1

kn

(j−1)∧(kn−1)∑
i=j−n+kn−1∨0

f ′ (pj−i−1,n) (Bj,n − pj∆n
)

=
√

∆n

n∑
j=1

 1

kn

(j−1)∧(kn−1)∑
i=j−n+kn−1∨0

f ′ (pj−i−1,n)

− f ′ (pj−1,n) + f ′ (pj−1,n)

 (Bj,n − pj∆n
)

=
√

∆n

n∑
j=1

f ′ (pj−1,n) (Bj,n − pj∆n) +
√

∆n

n∑
j=1

wnj (Bj,n − pj∆n) ,

where

wnj =
1

kn

(j−1)∧(kn−1)∑
i=j−n+kn−1∨0

f ′ (pj−i−1,n)− f ′ (pj−1,n) .

By conditioning on (pt)t∈[0,1], E
[
wnj (Bj,n − pj∆n

)
]

= 0. Next, by the assumption about the derivative of f ,

∣∣wnj ∣∣ ≤ C sup
s∈[(j−1)∆n,(j+kn−1)∆n]

|ps − pj−1,n| .

Hence, inequality (43) implies that E
[∣∣wnj ∣∣2] ≤ C

√
∆n when kn ≤ j ≤ b1/∆nc − kn and

∣∣wnj ∣∣ ≤ C always. Therefore,

since both Bj,n and pt are bounded,

Ej−1

[∣∣∣√∆nw
n
j (Bj,n − pj∆n

)
∣∣∣2] ≤

C∆
3/2
n kn ≤ j ≤ hn,

C∆n otherwise.
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Consequently,
∑b1/∆nc
j=1 Ej−1

[∣∣√∆nw
n
j (Bj,n − pj∆n

)
∣∣2] −→ 0, which by Lemma 2 implies that

√
∆n

∑b1/∆nc
j=1 wnj (Bj,n − pj∆n

)

is AN. Now, set ξnj =
√

∆nf
′ (pj−1,n) (Bj,n − pj∆n). Clearly, E

[
ξnj
]

= 0, and we have:

Ej−1

[(
ξnj
)2]

= ∆n (f ′ (pj−1,n))
2 Ej−1

[
pj∆n

− (pj∆n
)2
]
.

Because, (f ′ (pj−1,n))
2

is bounded, using (44) we have:∣∣∣Ej−1

[(
ξnj
)2]−∆n (f ′ (pj−1,n))

2 (
pj−1,n − (pj−1,n)2

)∣∣∣ ≤ C(∆n)2.

Therefore,
b1/∆nc∑
j=1

Ej−1

[(
ξnj
)2] P−→

∫ 1

0

f ′ (ps)
2
ps(1− ps) ds.

Consequently:
b1/∆nc∑
j=1

ξnj
stably
=⇒ MN (0,Σ),

which completes the proof.

A.4 Proof of Theorem 3.5 from Section 3.4

For any process X, denote the increments by ∆n
jX = X(j+1) ∆n

−Xj∆n . Set kn = θ b
√
nc and define:

ν̃n =

n−2kn+1∑
i=1

(p̂i+kn (kn)− p̂i (kn))
2
.

We then have to prove that, as n→∞:

k−1
n ν̃n

p−→ 2

3

∫ 1

0

ν2
s ds+

2

θ2

∫ 1

0

ps (1− ps) ds.

We have:

p̂j (kn) =
1

kn

kn−1∑
i=0

(Bj+i,n − pj+i,n) +
1

kn

kn−1∑
i=0

pj+i,n.

Consequently, the difference between p̂j+kn (kn) and p̂j (kn) can be expressed as:

p̂j+kn (kn)− p̂j (kn) =
1

kn

2kn−1∑
i=0

ε(1)i (Bj+i,n − pj+i,n) +
1

kn

kn−1∑
i=0

(pj+i+kn,n − pj+i,n) , (59)

where, for m ∈ {0, . . . , 2kn − 1}:

ε(1)m =

−1, 0 ≤ m < kn,

+1, kn ≤ m < 2kn.

Then, using telescopic sums, notice that:

(pj+i+kn,n − pj+i,n) =

kn−1∑
`=0

∆j+i+`,np.
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Now note that the sum Sj,n =
∑kn−1
i=0 (pj+i+kn,n − pj+i,n), collecting identical terms, becomes:

Sj,n = ∆n
j p+ ∆n

j+1p+ ∆n
j+2p+ . . .+ ∆n

j+kn−1p+∆n
j+knp

∆n
j p+ ∆n

j+1p+ ∆n
j+2p+ . . .+ ∆n

j+kn−1p+ ∆n
j+knp

∆n
j p+ ∆n

j+1p+ ∆n
j+2p+ . . .+ ∆n

j+kn−1p+ ∆n
j+knp+ ∆n

j+kn+1p

∆n
j p+ ∆n

j+1p+ ∆n
j+2p+

...∆n
j+kn−1p

∆n
j p+ ∆n

j+1p+ ∆n
j+2p+ . . .+ ∆n

j+kn−1p+ ∆n
j+knp+ ∆n

j+kn+1p+ . . .+ ∆n
j+2 kn−2p

= ∆n
j p+ 2 ∆n

j+1p+ 3 ∆n
j+2p+ . . .+ kn ∆n

j+kn−1p︸ ︷︷ ︸
kn terms

+ (kn − 1) ∆n
j+knp+ . . .+ ∆n

j+2 kn−2p︸ ︷︷ ︸
kn−1 terms

,

which can be rewritten as:

1

kn

kn−1∑
i=0

(pj+i+kn,n − pj+i,n) =
1

kn

2kn−1∑
i=0

ε(2)i (pj+i+1,n − pj+i,n) ,

where, for i ∈ {0, . . . , 2kn − 1}
ε(2)i = (i+ 1) ∧ (2kn − i− 1),

and, in particular, ε(2)2kn−1 = 0. Now expression (59) become:

p̂j+kn (kn)− p̂j (kn) =
1

kn

2kn−1∑
j=0

(ε(2)i (Bi+j,n − pj+i,n) + ε(2)i (pj+i+1,n − pj+i,n)) .

Therefore:

(p̂j+kn (kn)− p̂j (kn))
2

=
1

k2
n

2kn−1∑
i=0

(
ε(2)2

i (Bj+i,n − pj+i,n)
2

+ ε(2)2
i (pj+i+1,n − pj+i,n)

2

+ 2 ε(2)i ε(2)i (Bj+i,n − pj+i,n) (pj+i+1,n − pj+i,n)

)

+ 2

2 kn−2∑
j=0

2 kn−1∑
`′=j+1

(
ε(2)iε(1)` (Bj+i,n − pj+i,n) (Bj+`,n − pj+`,n)

+ ε(2)i ε(2)` (Bj+i,n − pj+i,n) (pj+`+1,n − pj+`,n)

+ ε(1)` ε(2)i (Bj+`,n − pj+`,n) (pj+i+1,n − pj+i,n)

+ ε(2)i ε(2)` (pj+i+1,n − pj+i,n) (pj+`+1,n − pj+`,n)

)
. (60)

So, setting;

ζ(1)j = Bj,n − pj,n, ζ(2)j = pj+1,n − pj,n,

we have the following more compact expression:

(p̂j+kn (kn)− p̂j (kn))
2

=
1

k2
n

2∑
u,v=1

(
2kn−1∑
i=0

ε(u)iε(v)iζ(u)j+iζ(v)j+i + 2

2kn−2∑
i=0

2kn−1∑
l=j+1

ε(u)iε(v)lζ(u)j+iζ(v)i+l

)
.

Consequently, ν̃n can be expressed as:

ν̃n =

7∑
s=1

n−2kn+1∑
i=1

vni (s),
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where

vni (1) =
1

k2
n

2kn−1∑
i=0

(Bj+i,n − pj+i,n)
2
, vni (2) =

1

k2
n

2kn−1∑
i=0

ε(2)2
i (pj+i+1,n − pj+i,n)

2
,

vni (3) =
2

k2
n

2kn−1∑
i=0

ε(1)iε(2)i (Bj+i,n − pj+i,n) (pj+i+1,n − pj+i,n) ,

vni (4) =
2

k2
n

2kn−2∑
i=0

2kn−1∑
l=i+1

ε(1)iε(1)l (Bj+i,n − pj+i,n) (Bj+l,n − pj+l,n) ,

vni (5) =
2

k2
n

2kn−2∑
i=0

2kn−1∑
l=j+1

ε(2)iε(2)l (pj+i+1,n − pj+i,n) (pj+l+1,n − pj+l,n) ,

vni (6) =
2

k2
n

2kn−2∑
i=0

2kn−1∑
l=j+1

ε(1)iε(2)l (Bj+i,n − pj+i,n) (pj+l+1,n − pj+l,n) ,

vni (7) =
2

k2
n

2kn−2∑
i=0

2kn−1∑
l=j+1

ε(2)iε(1)l (pj+i+1,n − pj+i,n) (Bj+l+1,n − pj+l,n) .

Consequently, to study the convergence of ν̃n in probability, we need to study the convergence of the sums
n−2kn+1∑
j=1

vnj (s)

for s = 1, . . . 7. In what follows, we use the abbreviation gn = n− 2kn + 1. For the sake of readability, we divide the rest

of the proof into seven parts.

Part 1: Proof of the convergence in probability of vni (1)

The quantity 1
kn

gn∑
j=1

vnj (1) can be decomposed as:

1

kn

gn∑
j=1

vnj (1) =

gn∑
j=1

d
(n)
j,1 +

gn∑
j=1

d
(n)
j,2 ,

where

d
(n)
j,1 =

1

k3
n

2kn−1∑
j=0

(
(Bj+i,n − pj+i,n)

2 − pi−1,n (1− pi−1,n)
)
, d

(n)
j,2 =

1

k3
n

2kn−1∑
j=0

pi−1,n (1− pi−1,n) .

First, we show that
gn∑
j=1

d
(n)
j,1 is AN. We have:

gn∑
j=1

∣∣∣Ej−1

[
d

(n)
j,1

]∣∣∣ =

gn∑
j=1

1

k3
n

2kn−1∑
j=0

∣∣Ej−1

[
pj+i,n − pj−1,n + p2

j−1,n − p2
j+i,n

]∣∣
≤

gn∑
j=1

1

k3
n

2kn−1∑
i=0

(
|Ej−1 [pj+i,n − pj−1,n]|+

∣∣Ej−1

[
p2
j+i,n − p2

j−1,n

]∣∣)
=

gn∑
j=1

1

k3
n

2kn−1∑
i=0

(|Ej−1 [pj+i,n − pj−1,n]|+ |Ej−1 [(pj+i,n + pj−1,n) (pj+i,n − pj−1,n)]|)

≤ C

gn∑
j=1

1

k3
n

2kn−1∑
i=0

kn∆n = C
kn∆n(2kn − 1)gn

k3
n

∼ 1

kn
−→ 0,
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where we use conditioning on (pt)t∈[0,1], triangular inequality, and Lemma 6. Next, using the boundedness of pt, we

obtain:

kn

gn∑
j=1

Ej−1

[∣∣∣d(n)
j,1

∣∣∣2] ≤ kn gn∑
j=1

1

k6
n

(
2kn−1∑
i=0

C

)2

= C
(2kn − 1)2 gn

k5
n

∼ 1

k3
n ∆n

−→ 0.

Consequently, by Lemma 2,
gn∑
j=1

d
(n)
j,1 is AN. Now, consider

gn∑
j=1

d
(n)
j,2 . We have:

gn∑
j=1

d
(n)
j,2 =

2

k2
n

gn∑
j=1

1

2kn

2kn−1∑
j=0

pj−1,n(1− pj−1,n) =
2

θ2

gn∑
j=1

pj−1,n(1− pj−1,n)
1

b
√
nc2
−→ 2

θ2

1∫
0

ps(1− ps) ds,

where the convergence is point-wise, by Riemann integrability. Combining the two results, we obtain:

1

kn

gn∑
j=1

vnj (1)
u.c.p.−→ 2

θ2

1∫
0

ps(1− ps) ds. (61)

Part 2: Proof of the convergence in probability of vni (2)

To begin, note that vnj (2) can be written as :

vnj (2) =
1

k2
n

2kn−1∑
i=0

ε(2)2
i

(
∆n
j+ip

)2
=

1

k2
n

2kn−1∑
i=0

ε(2)2
i

(
∆n
j p
)2

+
1

k2
n

2kn−1∑
i=1

ε(2)2
i

[(
∆n
j+ip

)2 − (∆n
j p
)2]

,

so that the sum over the index i of all the vnj (2) becomes:

1

kn

gn∑
j=0

vnj (2) =
1

k3
n

2kn−1∑
i=0

ε(2)2
i

gn∑
j=0

(
∆n
j p
)2

︸ ︷︷ ︸
An

+
1

k3
n

gn∑
j=0

2kn−1∑
i=1

ε(2)2
i

[(
∆n
j+ip

)2 − (∆n
j p
)2]

︸ ︷︷ ︸
Bn

.

Now we want to prove that An converges in probability to a finite quantity, while Bn is AN. Using the definition of the

integers’ coefficients ε(2)i it is easy to show that:

1

k3
n

2 kn−1∑
j=0

ε(2)2
i =

1

3 k3
n

(
2k3
n + kn

)
−→ 2

3
.

Hence, the standard theory of realized volatility for the semimartingale:

pt = p0 +

∫ t

0

µs ds+

∫ t

0

νs dWs

now implies that:

An
p−→ 2

3

∫ 1

0

ν2
s ds.

Concerning Bn, we write it as:

Bn =

gn∑
j=0

ϑj+1,n with ϑj+1,n =
1

k3
n

2kn−1∑
i=1

ε(2)2
i

[(
∆n
j+ip

)2 − (∆n
j p
)2]

,
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and, by Markov inequality, the Itô isometry and the boundedness of12 ν∫ ∆

0

νs dWs = ν0 (W∆ −W0) +Op(∆
1/2), (62)

Considering also that
∫ t

0
µs ds is Op (∆n) for bounded µ , we have

pj+1,n − pj,n =

∫ (j+1) ∆n

j∆n

µs ds+

∫ (j+1) ∆n

j∆n

νs dWs =
(
νj,n +Op

(√
∆n

))
(Wj+1,n −Wj,n) +Op(∆n)

= νj,n (Wj+1,n −Wj,n) +Op

(
∆1/2
n

)
(Wj+1,n −Wj,n) +Op (∆n) .

The square of the increment ∆n
j p = (pj+1,n − pj,n) then becomes:

(
∆n
j p
)2

= ν2
j,n

(
∆n
jW

)2
+
(
∆n
jW

)2
Op(∆n) +Op

(
∆2
n

)
+
(
∆n
jW

)2
Op

(
∆1/2
n

)
+
(
∆n
jW

)
Op (∆n) +

(
∆n
jW

)
Op

(
∆3/2
n

)
= ν2

j,n

(
∆n
jW

)2
+Op

(
∆2
n

)
+
(
∆n
jW

)2
Op

(
∆1/2
n

)
+
(
∆n
jW

)
Op (∆n) ,

which, by preserving only the leading terms can be further simplified into:

(
∆n
j p
)2

= ν2
j∆n

(
∆n
jW

)2
+Op

(
∆1/2
n

) (
∆n
jW

)2
+ νj,n

(
∆n
jW

)
Op (∆n) , (63)

so that:

Ej
[(

∆n
j p
)2]

= ν2
j,n ∆n +Op(∆

3/2
n ).

Now consider the same increment shifted by i units:

(
∆n
j+ip

)2
= ν2

i+j,n

(
∆n
j+iW

)2
+Op

(
∆2
n

)
+
(
∆n
j+iW

)2
Op

(
∆1/2
n

)
+
(
∆n
j+iW

)
Op (∆n)

=
(
ν2
j∆n

+Op (j∆n) +Op

(√
j∆n

)) (
∆n
j+iW

)2
+Op

(
∆2
n

)
+
(
∆n
j+iW

)2
Op

(
∆1/2
n

)
+
(
∆n
j+iW

)
Op (∆n)

= ν2
j∆n

(
∆n
j+iW

)2
+
(
∆n
j+iW

)2
Op

(√
j∆n

)
+Op

(
∆2
n

)
+
(
∆n
j+iW

)2
Op

(
∆1/2
n

)
+
(
∆n
j+iW

)
Op (∆n) ,

which, by preserving only the leading terms, can be further simplified into:

(
∆n
j+ip

)2
= ν2

j,n

(
∆n
j+iW

)2
+
(
∆n
j+iW

)2
Op

(√
i∆n

)
(64)

and so:

Ej
[(

∆n
j+ip

)2]
= ν2

j,n ∆n +Op

(
i1/2 ∆3/2

n

)
.

Therefore the Fti,n -conditional expected value of the difference between
(
∆n
j+ip

)2
and

(
∆n
j p
)2

has the following order in

probability:

Ej
[(

∆n
j+ip

)2 − (∆n
j p
)2]

= Op

(
i1/2 ∆3/2

n

)
,

implying that
gn∑
j=0

Ej [ϑj+1,n] =
1

k3
n

gn∑
j=0

2kn−1∑
i=0

ε(2)2
iOp

(
i1/2 ∆3/2

n

)
= Op

(
(kn ∆n)

1/2
)

p−→ 0,

12Here we follow the standard approach

P
(∣∣∣∣ 1
√

∆

[ ∫ ∆

0
νs dWs − ν0(W∆ −W0)

]∣∣∣∣ > M

)
≤

1

M2∆
E

(∣∣∣∣∫ ∆

0
(νs − ν0) dWs

∣∣∣∣2
)

=
1

M2∆
E
(∫ ∆

0
(νs − ν0)2 ds

)
,

and then the identity (62) follows from the boundedness of ν.
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which is the first of the two conditions in Lemma 2 that guarantee AN. To prove that also the second condition is satisfied

consider:

kn ϑ
2
j+1,n =

1

k5
n

2kn−1∑
i=0

ε(2)4
i

[(
∆n
j+ip

)2 − (∆n
j p
)2]2

︸ ︷︷ ︸
Ci,n

+
2

k5
n

2kn−2∑
i=0

2kn−1∑
`=j+1

ε(2)2
i ε(2)2

`

[(
∆n
j+ip

)2 − (∆n
j p
)2] [(

∆n
j+`p

)2 − (∆n
j p
)2]

︸ ︷︷ ︸
Di,n

.

From (63) we get

(
∆n
j p
)4

= ν4
j,n

(
∆n
jW

)4
+Op(∆n)

(
∆n
jW

)4
+ ν2

j,n

(
∆n
jW

)2
Op
(
∆2
n

)
+ 2 ν2

j,n

(
∆n
jW

)4
Op

(
∆1/2
n

)
+ 2 ν3

j,n

(
∆n
jW

)3
Op (∆n) + 2 νj,n

(
∆n
jW

)3
Op

(
∆3/2
n

)
and therefore:

Ej
[(

∆n
j p
)4]

= 3 ν4
j,n ∆2

n +Op(∆
3
n) +Op(∆

3
n) +Op(∆

5/2
n ) = 3 ν4

j,n ∆2
n +Op(∆

5/2
n ).

Similarly, from (64) we get:

(
∆n
j+ip

)4
= ν4

j,n

(
∆n
j+iW

)4
+
(
∆n
j+iW

)4
Op (j∆n) + 2 ν2

j,n

(
∆n
j+iW

)4
Op

(√
i∆n

)
and hence

Ej
[(

∆n
j+ip

)4]
= 3 ν4

j,n ∆2
n +Op

(
i∆3

n

)
+Op

(
i1/2 ∆5/2

n

)
= 3 ν4

j,n ∆2
n +Op

(
i1/2 ∆5/2

n

)
.

Summing up the two fourth powers so obtained:

Ej
[(

∆n
j+ip

)4
+
(
∆n
j+ip

)4]
= 6 ν4

j,n ∆2
n +Op

(
i1/2 ∆5/2

n

)
.

Finally consider that:

(
∆n
j+ip

)2 (
∆n
j p
)2

=
(
ν2
j,n

(
∆n
j+iW

)2
+
(
∆n
j+iW

)2
Op

(√
i∆n

))
×(

ν2
j,n

(
∆n
jW

)2
+
(
∆n
jW

)2
Op

(
∆1/2
n

)
+ νj,n

(
∆n
jW

)
Op (∆n)

)
= ν4

j,n

(
∆n
j+iW

)2 (
∆n
jW

)2
+ ν2

j,n

(
∆n
j+iW

)2 (
∆n
jW

)2
Op

(
∆1/2
n

)
+ ν3

j,n

(
∆n
j+iW

)2 (
∆n
jW

)
Op (∆n)

+ ν2
j,n

(
∆n
j+iW

)2 (
∆n
jW

)2
Op

(√
i∆n

)
+
(
∆n
j+iW

)2 (
∆n
jW

)2
Op

(
i1/2 ∆n

)
+ νj,n

(
∆n
j+iW

)2 (
∆n
jW

)
Op

(
i1/2 ∆3/2

n

)
,

where:

Ej
[(

∆n
j+ip

)2 (
∆n
j p
)2]

= ν4
j,n ∆2

n +Op

(
∆5/2
n

)
+Op

(
i1/2 ∆5/2

n

)
+Op

(
i1/2 ∆3

n

)
= ν4

j,n ∆2
n +Op

(
i1/2 ∆5/2

n

)
.

Therefore:

Ej
[(

∆n
j+ip

)4
+
(
∆n
j+ip

)4 − 2
(
∆n
j+ip

)2 (
∆n
j p
)2]

= 6 ν4
j,n ∆2

n +Op

(
i1/2 ∆5/2

n

)
,

which implies:

gn∑
i=0

E [Cj,n] =
1

k5
n

gn∑
i=0

2kn−1∑
i=0

ε(2)4
iE
[((

∆n
j+ip

)2 − (∆n
j p
)2)2

]
=

1

k5
n

gn∑
i=0

2kn−1∑
i=0

ε(2)4
iE
[
ν4
j,n ∆2

n +Op

(
i1/2 ∆5/2

n

)]
= O (∆n) −→ 0.
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Concerning Cj,n, first call ε2
i,` = ε(2)2

i ε(2)2
` and then note that:

E [|Dj,n|] =
2

k5
n

2kn−2∑
i=0

2kn−1∑
`=i+1

ε2
i,` E

[∣∣∣(∆n
j+ip

)2 − (∆n
j p
)2∣∣∣ ∣∣∣(∆n

j+`p
)2 − (∆n

j p
)2∣∣∣]

≤ 2

k5
n

2kn−2∑
i=0

2kn−1∑
`=i+1

ε2
j,`

(
E
[((

∆n
j+ip

)2 − (∆n
j p
)2)2

]) 1
2
(
E
[((

∆n
j+`p

)2 − (∆n
j p
)2)2

]) 1
2

=
2

k5
n

2kn−2∑
i=0

2kn−1∑
`=i+1

ε2
j,`

(
E
[
6 ν4

j,n ∆2
n +Op

(
j

1
2 ∆

5
2
n

)]) 1
2
(
E
[
6 ν4

j,n ∆2
n +Op

(
`

1
2 ∆

5
2
n

)]) 1
2

.

Because ε(2)2
i ε(2)2

` ≤ C k4
n, we get:

E [|Dj,n|] ≤ C kn ∆2
n

so that:
gn∑
j=0

E [|Dj,n|] ≤ C kn ∆n → 0,

and hence, in conclusion, Bn is AN.

Part 3: Proof of the convergence in probability of vni (3)

In what follows, we call:

ζ (1)j
.
= Bj,n − pj,n and ζ (2)j

.
= pj+1,n − pj,n.

The quantity vnj (3) can be rewritten as:

vnj (3) =
2

k2
n

2kn−1∑
i=0

ε (1)i ε (2)i ζ (1)j+i ζ (2)j+i .

Therefore, the quantity 1
kn

∑gn
i=0 v

n
i (3) becomes:

1

kn

gn∑
i=0

vnj (3) =

gn∑
i=0

2

k3
n

2kn−1∑
i=0

ε (1)i ε (2)i ζ (1)j+i ζ (2)j+i .

First, we observe that, conditionally on (pt), we have that E
[
ζ (1)j

]
= 0 and so Ej−1

[
vnj (3)

]
= 0. Then, we note that

term kn

(
vnj (3)

kn

)2

can be decomposed as:

kn

(
vnj (3)

kn

)2

=
4

k5
n

2kn−1∑
i=0

(ε (2)i)
2
(
ζ (1)j+i

)2 (
ζ (2)j+i

)2

+
8

k5
n

2kn−2∑
j=0

2kn−1∑
i=0

ε(1)jε(2)jζ(1)i+jζ(2)i+jε(1)lε(2)lζ(1)i+lζ(2)i+l

.
= A1,n +A2,n

Now, by conditioning on (pt), we readily obtain that E [A2,n] = 0. Concerning A1,n, we have:

E [|A1,n|] ≤ E

[
4

k5
n

2kn−1∑
i=0

(ε (2)i)
2

(
ζ (1)

2
j+i

(
ζ (2)j+i

)2
)]
≤ C

k5
n

∆n

2kn−1∑
i=0

(ε (2)i)
2
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By the boundedness of Bernoulli random variables and (pt) we have that
(
ζ (1)j+i

)2

≤ C for some positive constant C.

Therefore:

E [|A1,n|] ≤
C

k5
n

∆n

2kn−1∑
j=0

(ε (2)i)
2

=
C

k5
n

∆n
2k3
n + kn

3
∼ ∆n

k2
n

.

Therefore:
gn∑
j=1

E [|A1,n|] ≤
C

kn
→ 0.

Consequently, by Lemma 2, 1
kn
vnj (3) is AN.

Part 4: Proof of the convergence in probability of vni (4)

First, by conditioning on (pt) we readily obtain Ej−1

[
vnj (4)

]
= 0. Next, consider the decomposition:

(
vnj (4)

kn

)2

= A1,n +A2,n,

where

A1,n =
C

k6
n

2kn−2∑
j=0

(
2kn−1∑
l=i+1

ε(1)iε(1)lζ(1)j+iζ(1)j+l

)2

,

and

A2,n =
C

k6
n

2kn−3∑
i=0

2kn−2∑
m=i+1

(
2kn−1∑
l=i+1

ε(1)iε(1)lζ(1)j+iζ(1)j+l

)(
2kn−1∑
u=m+1

ε(1)mε(1)uζ(1)j+mζ(1)j+u

)
,

=
C

k6
n

2kn−3∑
i=0

2kn−2∑
m=i+1

2kn−1∑
l=i+1

2kn−1∑
u=i+2

ε(1)iε(1)lε(1)mε(1)uζ(1)j+iζ(1)j+lζ(1)j+uζ(1)j+m.

By conditioning on (pt) again, we have E [ζ(1)j+iζ(1)j+lζ(1)j+uζ(1)j+m] = 0 if at least two of the indexes i, l, u,m are

different. Because in the sums that appear in A2,n one among m, l, or u is different from i, we have E [A2,n] = 0.

Analogously: the expected value of the cross-product terms in A1,n is zero. Next, because |ζ(1)j+l| ≤ C, for some

constant C > 0,

E [A1,n] =
C

k6
n

2kn−2∑
i=0

2kn−1∑
l=i+1

E
[
(ζ(1)j+iζ(1)j+l)

2
]
≤ C(2kn − 2)(2kn − 1)

k6
n

∼ 1

k4
n

.

Therefore:

kn

gn∑
i=1

E

[(
vnj (4)

kn

)2
]
≤ C

k3
n∆n

→ 0.

Consequently, by Lemma 2, 1
kn
vnj (4) is AN. Part 5: Proof of the convergence in probability of vni (5)

By successive conditioning and using Lemma 6, we obtain

∣∣Ej−1

[
vnj (5)

]∣∣ ≤ C

k2
n

2kn−2∑
i=0

2kn−1∑
l=i+1

ε(2)iε(2)l∆
2
n = C

∆2
n

k2
n

2kn−2∑
i=0

2kn−1∑
l=i+1

ε(2)iε(2)l ∼ C ∆2
nk

2
n,

where we use the fact that
∑2kn−2
i=0

∑2kn−1
l=i+1 ε(2)iε(2)l ∼ k4

n. Therefore, we have:

gn∑
j=1

1

kn

∣∣Ej−1

[
vnj (5)

]∣∣ ∼ ∆nkn → 0.
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Next, we have: (
vnj (5)

kn

)2

= A1,n +A2,n,

where:

A1,n =
C

k6
n

2kn−2∑
i=0

(
2kn−1∑
l=i+1

ε(2)iε(2)lζ(2)j+iζ(2)j+l

)2

,

A2,n =
C

k6
n

2kn−3∑
j=0

2kn−2∑
m=j+1

2kn−1∑
l=i+1

2kn−1∑
u=j+2

ε(2)iε(2)lε(2)mε(2)uζ(2)j+iζ(2)j+lζ(2)i+uζ(2)i+m.

Furthermore, we have:

A1,n = A1,1,n +A1,2,n,

where:

A1,1,n =
C

k6
n

2kn−2∑
i=0

2kn−1∑
l=i+1

(ε(2)iε(2)lζ(2)j+iζ(2)j+l)
2
,

A1,2,n =
C

k6
n

2kn−3∑
i=0

2kn−2∑
l=i+1

2kn−1∑
m=i+2

(ε(2)i)
2
ε(2)lε(2)m (ζ(2)j+i)

2
ζ(2)j+lζ(2)j+m.

Using the estimate (43) of Lemma 6, and the fact that
∑2kn−2
i=0

∑2kn−1
l=i+1 (ε(2)iε(2)l)

2 ∼ k6
n, we obtain:

E [A1,1,n] ≤ C ∆2
n

k6
n

2kn−2∑
i=0

2kn−1∑
l=i+1

(ε(2)iε(2)l)
2 ∼ ∆2

n,

which implies that kn
gn∑
i=1

E [A1,1,n] ≤ kn ∆n → 0. Next, using the estimates (43) and (44) of Lemma 6, we have

E
[
(ζ(2)j+i)

2
ζ(2)j+lζ(2)j+m

]
≤ C

∆2
n, l = m,

∆3
n, i 6= l 6= m.

Therefore, we have:

E [A1,2,n] ≤ C∆2
n

k6
n

S1 + C
∆3
n

k6
n

S2 ∼ ∆2
n ∨∆3

nkn,

where:

S1 =

2kn−3∑
j=0

2kn−2∑
l=i+1

2kn−1∑
m=i+2

(ε(2)i)
2
ε(2)lε(2)mI ({l = m}) =

2kn−3∑
i=0

2kn−2∑
l=i+2

(ε(2)i)
2

(ε(2)l)
2 ∼ k6

n,

S2 =

2kn−3∑
i=0

2kn−2∑
l=i+1

2kn−1∑
m=i+2

(ε(2)i)
2
ε(2)lε(2)mI ({l 6= m}) =

2kn−3∑
i=0

2kn−2∑
l=i+1

2kn−1∑
m=i+2

(ε(2)i)
2
ε(2)lε(2)m − S1 ∼ k7

n.

Consequently,

kn

gn∑
j=1

E [A1,2,n] ≤ C ∆nkn → 0.
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So, summing up kn
∑gn
j=1 E [A1,n]→ 0. With a procedure similar to that used for A1,2,n, we obtain

kn

gn∑
j=1

E [A2,n] ≤ C ∆nkn → 0.

Thus, 1
kn
vnj (5) is AN by Lemma 2.

Part 6: Proof of the convergence in probability of vni (6) and vni (7). First, by conditioning on (pt) we readily obtain

Ej−1

[
vnj (6)

]
= 0. Next, consider the decomposition:

(
vnj (6)

kn

)2

= A1,n +A2,n,

where

A1,n =
C

k6
n

2kn−2∑
i=0

(
2kn−1∑
l=i+1

ε(1)iε(2)lζ(1)j+iζ(2)j+l

)2

and

A2,n =
C

k6
n

2kn−3∑
i=0

2kn−2∑
m=i+1

(
2kn−1∑
l=i+1

ε(1)iε(2)lζ(1)j+iζ(2)j+l

)(
2kn−1∑
u=m+1

ε(1)mε(2)uζ(1)j+mζ(2)j+u

)
,

=
C

k6
n

2kn−3∑
i=0

2kn−2∑
m=i+1

2kn−1∑
l=i+1

2kn−1∑
u=i+2

ε(1)iε(2)lε(1)mε(2)uζ(1)j+iζ(2)j+lζ(1)j+uζ(2)j+m.

By conditioning on (pt), E [A2,n] = 0, because E [ζ(1)j+iζ(1)j+u] = 0 for u > i. Analogously, the expected value of the

cross-product terms in A1,n is zero. Therefore, we have:

E [A1,n] =
C

k6
n

2kn−2∑
i=0

2kn−1∑
l=i+1

E
[
(ε(1)iε(2)lζ(1)j+iζ(2)j+l)

2
]
≤ C ∆n

k6
n

2kn−2∑
i=0

2kn−1∑
l=i+1

(ε(2)l)
2 ∼ ∆n

k2
n

.

Thus:

kn

gn∑
j=1

E [A1,n] ≤ C

kn
→ 0.

Consequently, 1
kn
vnj (6) is AN by Lemma 2. Analogously, 1

kn
vnj (7) is AN as well.

58



 Electronic copy available at: https://ssrn.com/abstract=3283628 

 

SAFE | House of Finance | Goethe University Frankfurt | www.safe-frankfurt.de | info@safe.uni-frankfurt.de 

Recent Issues 

No. 235 Christian Kubitza, Loriana Pelizzon, 
Mila Getmansky Sherman 

The Pitfalls of Central Clearing in the 
Presence of Systematic Risk 

No. 234 Alejandro Bernales, Nicolás 
Garrido, Satchit Sagade, Marcela 
Valenzuela, Christian Westheide 

A Tale of One Exchange and Two 
Order Books: Effects of Fragmentation 
in the Absence of Competition 

No. 233 Baptiste Massenot, Yuri Pettinicchi Can Households See into the Future? 
Survey Evidence from the Netherlands 

No. 232 Jannic Alexander Cutura Debt Holder Monitoring and Implicit 
Guarantees: Did the BRRD Improve 
Market Discipline? 

No. 231 Benjamin Clapham, Peter Gomber, 
Jens Lausen, Sven Panz 

Liquidity Provider Incentives 
in Fragmented Securities Markets 

No. 230 Yalin Gündüz, Giorgio Ottonello, 
Loriana Pelizzon, Michael 
Schneider, Marti G. 
Subrahmanyam 

Lighting up the Dark: Liquidity in the 
German Corporate Bond Market 

No. 229 Daniel Harenberg Asset Pricing in OLG Economies With 
Borrowing Constraints and Idiosyncratic 
Income Risk 

No. 228 Roberto C. Panzica Idiosyncratic Volatility Puzzle: The Role 
of Assets' Interconnections 

No. 227 Mila Getmansky, Ravi 
Jagannathan, Loriana Pelizzon, 
Ernst Schaumburg, Darya Yuferova 

Stock Price Crashes: Role of 
Slow-Moving Capital 

No. 226 Loriana Pelizzon, Marti G. 
Subrahmanyam, Davide Tomio,  
Jun Uno 

Central Bank–Driven Mispricing? 

No. 225 Monica Billio, Massimiliano 
Caporin, Lorenzo Frattarolo, 
Loriana Pelizzon 

Networks in risk spillovers: 
A multivariate GARCH perspective 


	WPS_Cover-Template_2015_A4
	KLP2018_v12_Scribendi
	WPS_Recent Issues_bis 235

