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Non-Technical Summary 

 

Financial crises and systemic risks proved to play central roles as shock transmitters to the 
real economy, threatening the stability of the economic and financial systems. These 
phenomena have boosted a massive interest in the literature which deeply investigated 
systemic risk and contagion channels on the financial systems.  
 
Generally, systemic risk may arise as the interactions among financial institutions and markets 
which, consequently, lead to financial crises. A stylized fact that occurs often in real networks 
is the presence of a group of nodes which share common properties or play a similar role within 
the network. These community structures have been recognized also in finance with the 
presence of key nodes (community bridges) linked through short-cuts to otherwise separated 
communities. The case in point to better understand the role of the community structure in a 
network is provided by epidemiology. A parallelism with the financial stability indicates that the 
mitigation and prevention of the spread in infectious diseases (financial contagion) can be 
attained by seeking actively to immunize the super-spreaders. However, the presence of a 
community structure significantly affects the dynamic of the disease: immunization 
interventions focusing on nodes strongly linked with other communities (community bridges) 
are in this case more effective than the ones which aim to the highly connected nodes in the 
whole network. The reason is that community bridges are more relevant in spreading out 
contagion with respect to the nodes with fewer inter-community connections in the group: with 
the latter, contagion may stop before spreading out to the other communities. Hence, in a 
network with a community structure, classical connectedness measures can lead to the 
misidentification of a given SIFI at least in two cases: i) a financial institution shows a lower 
total degree with respect to the other nodes in the community, but a higher degree to the nodes 
belonging to other communities (false negative); ii) a financial institution shows a higher total 
degree with respect to the other nodes in the community, but a lower degree to the nodes 
belonging to other communities (false positive). Therefore, also in a financial network, the node 
immunization through the identification of highly connected nodes may not be effective in a 
network with community structure.  
 
On this ground, the aim of this paper is to investigate the topology of the financial networks 
focusing on the detection of financial communities and community bridges to overcome the 
weakness of classical connectedness measure. We denote these communities as the 
Systemically Important Financial Communities (SIFC) defined as a group of nodes that belong 
to the community with the highest inter-connectivity density of the network. In this regard, we 
propose measures of connectedness to describe the inter- and intra community connectivity 
in financial networks. In the empirical analysis, we investigate the European financial system 
from 1996 to 2013 including all the financial firms (active and dead). Findings show a time-
varying com-munity structure in the European financial networks which exhibits an increasing 
number of communities during periods of financial distress. By analyzing the global financial 
crisis and European sovereign debt crisis, our results show that the network exhibits a structure 
with the presence of a core block (the SIFC) acting as the shock spreader to a second block, 
the receiver. In both periods, insurances play a primary role in spreading shocks with respect 
to other financial sectors (i.e. banks). In fact, the SIFC contains a share of insurances which is 
more than the half of the total market and the largest financial institutions in terms of market 
capitalization. 



 Electronic copy available at: https://ssrn.com/abstract=3178053  Electronic copy available at: https://ssrn.com/abstract=3178053 

Financial Bridges and

Network Communities∗

Roberto Casarin† Michele Costola‡ Erdem Yenerdag§

This version: September 29, 2018

Abstract

We analyze the global financial crisis and the European sovereign debt crisis showing that the European
network exhibits a strong community structure with two main blocks acting as shock spreader and
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1 Introduction

Financial crises and systemic risk proved to play a central role as shock transmitters to the

real economy, threatening the stability of the economic and financial systems (i.e., Allen et al.,

2012; Giglio et al., 2016). These phenomena attracted increasing interest in the literature which

deeply investigated systemic risks and contagion channels in the financial system (Billio et al.,

2012; Brownlees and Engle, 2017; Tobias and Brunnermeier, 2016). Usually, systemic risks arise

from the interactions between financial institutions and the market which eventually, might lead

to financial crises (Allen and Carletti, 2013).

Network models represent an efficient way to describe financial relationships between finan-

cial institutions: the analysis of linkages allows to monitor the structure of the system in order

to pursue financial stability (Diebold and Yilmaz, 2015; Scott, 2016).1 Highly interconnected

financial networks can be “robust-yet-fragile”. The connectedness acts as a shock absorber for a

given range, while beyond that range, it becomes a “shock-propagator mechanism” where robust-

ness turns to fragility by generating systemic risks (Haldane, 2013). Indeed, the characteristics

that make a financial network more resilient are the same that, under different conditions, bring

instability to the financial system (Acemoglu et al., 2015). To enhance the resilience of the finan-

cial system and mitigate systemic risk, policymakers aim to identify the so-called Systemically

Important Financial Institutions (SIFIs) (Freixas et al., 2000; Thomson, 2010).

With the studies of financial network topologies, different indicators have been proposed to

measure systemic risk: global measures to describe the structure of financial networks (e.g.,

density and assortativity) and local measures to detect SIFIs (e.g., degree and centrality).

A stylized fact which often occurs in networks is that the probability of having an edge

between a pair of vertices is not equal across all possible pairs. Different than pure random

graphs, real-world networks display heterogeneity not only globally, but also locally with a high

concentration of edges within groups of nodes and low concentrations between groups. This

phenomenon is known as community structure or network modularity (Leicht and Newman,

2008; Newman, 2018) where a community is defined as a group of nodes which share common

properties or play a similar role within the network (Fortunato, 2010).

Community structures have also been recognized in financial networks with the presence of

nodes linked through short-cuts to otherwise separated communities (Haldane, 2013). These

key-nodes act as community bridges. These structures have not been fully investigated in the

1The Financial Stability Board considers interconnectedness a key criteria to identify the systemic importance of
the financial institutions (Financial Stability Board, 2009).
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financial literature. Notable exceptions are represented by de Souza et al. (2016), Puliga et al.

(2016) and Bargigli and Gallegati (2013).2

A case in point to better understand the role of the community structure in a network is

provided by epidemiology. Parallelism with the financial stability indicates that the mitigation

and prevention of the spread in infectious diseases (financial contagion) can be attained by seek-

ing actively to immunize the super-spreaders (Haldane and May, 2011). However, the presence

of a community structure significantly affects the dynamic of the disease: immunization inter-

ventions focusing on nodes strongly linked with other communities (community bridges) are in

this case more effective than the ones which aim to the highly connected nodes in the whole

network (Salathé and Jones, 2010). The reason is that community bridges are more relevant in

spreading out contagion with respect to the nodes with fewer inter-community connections in

the group: with the latter, contagion may stop before spreading out to the other communities.

More generally, a critical aspect of node centrality measures is their sensitivity to the degree

heterogeneity. In the presence of strong degree heterogeneity, e.g., hubs and core-periphery

structures, most of the components have null centrality. Hence, in a network with a community

structure, classical connectedness measures can lead to the misidentification of a SIFI at least in

two cases: i) a financial institution shows a lower total degree with respect to the other nodes in

the community, but a higher degree to the nodes belonging to other communities (false negative)

and ii) a financial institution shows a higher total degree with respect to the other nodes in the

community, but a lower degree to the nodes belonging to other communities (false positive).

Therefore, also in a financial network, the node immunization through the identification of

highly connected nodes may not be effective in a network with community structure (Karrer

and Newman, 2011).

On this ground, the paper aims to investigate the topology of financial networks focusing

on the detection of financial communities and community bridges to overcome the weakness of

classical connectedness measure. We denote these communities as the Systemically Important

Financial Communities (SIFCs) defined as a group of nodes that belong to the community with

the highest inter-connectivity density of the network. In this regard, we propose measures of

connectedness to describe the inter- and intra community connectivity in financial networks.

We identify the communities by applying a Weighted Stochastic Block Model (WSBM) which

2Bargigli and Gallegati (2013) investigate credit communities on a Japanese bank-firm weighted and directed
bipartite network finding a strengthening of Japanese communities over time. Puliga et al. (2016) provide evidence
through an accounting network that regional bank communities change weakening geographically boundaries.
Finally, de Souza et al. (2016) identify Brazilian banking communities through inter-banking exposures showing
that a large part of them include non-large banks.
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considers both the edge existence and the edge weight of the network (Aicher et al., 2014). The

model allows to have a compact characterization of the network structure through blocks and

represents a generalization of the Stochastic Block model (SBM) introduced by Holland et al.

(1983). Ha laj and Kok (2013) show that SBM can be successfully used to simulate contagion

and cascades since it allows to circumvent the bias problem in standard random network models

which tend to underestimate tails and contagion risk. To our knowledge, this paper is the first

to introduce this approach in the financial economics literature.

In the empirical analysis, we investigate the European financial system from 1996 to 2013

including all the financial firms (active and dead). Dynamic networks of European financial

institutions are inferred through Granger-causality tests using a rolling window estimation as

performed in Billio et al. (2012). This bivariate approach for network estimation allows to

easily deal with large datasets and delisting in stocks markets avoiding the survivorship bias

(Shumway, 1997). The WSBM model is independent by the chosen methodology in the network

estimation, and alternative techniques such as graph-based approaches and sparse models can

be applied (i.e., Ahelegbey et al., 2016a,b; Hautsch et al., 2015).

Our findings show that there exist a time-varying community structure in the European

financial network which exhibits an increasing number of communities during periods of financial

distress. An increase of the number of communities is a signal of network complexity, which

may reflect into heterogeneous connectivity patterns and shock propagation mechanisms among

financial institutions. Using the new proposed community connectivity measures, we find that

the density of the financial network is mainly driven by the inter-linkages. This highlights

the primary role played by financial community bridges in the spread of shocks across the

communities and consequently, to the whole network. We show that these measures represent

a better early warning indicator in terms of future financial losses with respect to the classical

connectedness measures.

Moreover, we analyze the European network during the global financial crisis and the Eu-

ropean sovereign debt crisis and show that its community structure exhibits a SIFC acting as

the shock spreader to a second block, the receiver. In both periods, we find that insurances

play a prominent role in spreading shocks with respect to other financial sectors (i.e., banks).

In fact, the SIFC contains a share of insurances which is more than the half of the total market

and include the largest financial institutions in terms of market value. The key reason is due

to the fact that the insurance industry is no longer mainly involved in the traditional business

model where risk is well diversified and relies on insurance policies (Baranoff and Sager, 2009;

4
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Brewer et al., 2007). Insurances are now exposed to macroeconomic and non-diversifiable factors

(Acharya et al., 2011) resulting from investment decisions (i.e., fixed income linked life insurance

policies with minimum guarantees). Hence, firm characteristics such as size, leverage, assets’

riskiness, and liquidity mismatch represent the conditions that turn banks as well as insurances

into SIFIs (Acharya et al., 2016). Furthermore, regulatory constraints on insurances contribute

to fire sales in the corporate bond market which in turn entail systemic risk and other significant

externalities in the financial markets (Ellul et al., 2011; Shleifer and Vishny, 2011).

The remainder of the paper is organized as follows. Section 2 discusses network community

structures and propose connectivity measures. Section 3 presents the empirical analysis of the

European financial system while Section 4 shows the ability of community connectivity measures

in predicting financial losses and their impact on the European financial network in terms of

contagion. Finally, Section 5 concludes.

2 Community Connectivity Measures

2.1 A Community Generative Model

Network models represent a useful tool to depict financial systems given their high degree of

interdependence (Franklin Allen, 2009). In financial networks, a node represents a financial in-

stitution (e.g., a bank or an insurance company) and an edge has the interpretation of financial

linkage between to institutions. In mathematical terms, a network can be represented through

the notion of the random graph given by a set of nodes and a set of parameters driving the

probability of the existence of an edge between all pairs of nodes. Often, real-world networks

have structures which are not fully observable due to missing or unavailable information Jackson

(2010). For instance, socio-economic conditions (i.e., level of income) can represent one of the

drivers which lead to the formation of different political groups (clusters) in social networks. In

financial networks, latent structures can be driven by portfolio exposures to different financial

and macroeconomic risk factors which can lead to heterogeneous interdependence among finan-

cial institutions. Cifuentes et al. (2005) propose a model where financial institutions are linked

through portfolio holdings and show that contagion is mostly driven by changes in asset prices.

Caccioli et al. (2014) show that not only common asset holdings but also extreme portfolio di-

versification can create systemic risk worsening financial contagion in the network. As observed

in Franklin Allen (2009), financial network structures respond differently to the propagation of

shocks (contagion), and consequently, the resilience of the whole system also depends on the

5
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position in the network of the institution affected by the shock. Clearly, revealing these latent

structures can provide valuable information for a better comprehension of the financial system

concerning propagation of shocks and hence, connectivity.

The Stochastic Block Model (SBM) is one of the most flexible generative models for random

networks since it allows for different types of connectivity structures while preserving parameter

parsimony. In an SBM of n nodes, each node is assigned randomly to one of the K groups of

nodes called communities or blocks. The label zi with values in 1, . . . ,K indicates the block

to which the node i is assigned. The variable aij takes value 1 if an edge exists between node

i and j and 0, otherwise. The probability of an edge between nodes i and j depends on their

community labels zi and zj , that is,

P (aij = 1) = θzizj , (1)

where 0 ≤ θlk ≤ 1 and l, k = 1, . . . ,K are the elements of the so-called affinity matrix which

describes the connectivity between the communities. Depending on the ranking between the

elements of the affinity matrix, the network has different connectivity structure between nodes

(institutions) in the same community (intra-community connectivity) and between nodes of

different communities (inter-community connectivity).

In the following, we define four structures which typically emerge in real-world networks

and are useful for interpreting the results of our empirical analysis. We refer to an assortative

structure when intra-community linkage intensity is larger than the inter-community one (i.e,

θii > θij with i 6= j). Conversely, a disassortative structure appears when intra-community

linkage intensity is smaller than the inter-community one (i.e, θii < θij with i 6= j). To exem-

plify, Panel (a) and (b) (Figure 1) provide an example of the assortativity and disassortativity,

respectively, in a network with four communities.

Differently, when θii > θjj and θij > θjj for all i 6= j, linkages are most likely to be in

one community (core) and nodes in other communities (periphery) are more likely connected to

those in the core than to each other. We refer to this structure as core-periphery3.

Finally, an ordered structure arises when the connectivity of each community follows a chain

and the nodes of one community are connected to nodes of at the most two other communities,

that is, θij > 0 if j = i + 1, i − 1 and θij = 0 otherwise, for all i 6= j (see Panel(d)). In

Appendix A, we include a full description of the stochastic block model. Moreover, we propose

3See Panel(c), for example.
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a new dynamic specification and the inference procedure used in the empirical analysis.

(a) Assortative (b) Disassortative (c) Core-Periphery (d) Ordered

Figure 1: Examples of potential community connectivity patterns as in Aicher et al. (2014). The
first (second) row reports the graph (adjacency matrix) of the network ordered by community
membership of the nodes. Black (red) color indicates intra (inter) linkages: (a) Assortative type
shows mainly intra-linkages within community; (b) Disassortative type shows inter-linkages in
between communities; (c) Core-Periphery type shows the presence of a core with intra- and
inter-linkages to the periphery (the other communities) which is in turn mainly connected to the
core and (d) Ordered type shows inter-linkages and intra-linkages from the top to the bottom.

2.2 Connectivity Measures

As in the previous section, let zit ∈ {1, . . . ,Kt} be the allocation variable indicating the com-

munity to which the institution i belongs to at time t, Kt the number of communities, nkt the

number of institutions in the k-th community, and nt the number of institutions in the network

at time t.

The in- and out-degree of a node i that are given by

d+it =

nt∑
j=1

Aji,t, d−it =

nt∑
j=1

Aij,t, (2)

respectively, and can be decomposed as follows

d+it = d+,INTRA
it + d+,INTER

it ,

d−it = d−,INTRA
it + d−,INTER

it .
(3)

7
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The intra- and inter-community degrees, in Equation 3, are given by

d+,INTRA
it =

nt∑
j=1

Aji,tI(zit = zjt), d+,INTER
it =

nt∑
j=1

Aji,t(1− I(zit = zjt)),

d−,INTRA
it =

nt∑
j=1

Aij,tI(zit = zjt), d−,INTER
it =

nt∑
j=1

Aij,t(1− I(zit = zjt)).

(4)

The intra- and inter-community degrees measure the connectivity of node (institution) i with

the other nodes (institutions) in the same community (INTRA) and with the nodes of the other

communities (INTER). The out (in) inter-linkages allows to identify which nodes play the role

of financial bridges as shock spreaders (receivers) to (from) other communities. In particular,

the inter-linkages among a given community to another one can be viewed as a sub-bipartite

network.

Hence, the density of the network is given by

ft =
1

2nt(nt − 1)

nt∑
i=1

(d+it + d−it), (5)

which also can be represented as the convex combination of intra- and inter-community densities

as follows

ft = w1tf
INTRA
t + w2tf

INTER
t . (6)

Moreover, the densities are defined as

f INTRA
t =

1

2c1t

nt∑
i=1

(d+,INTRA
it + d−,INTRA

it ), f INTER
t =

1

2c2t

nt∑
i=1

(d+,INTER
it + d−,INTER

it ), (7)

where f INTRA
t is equal to 1 if all the community sub-networks are complete graphs and anal-

ogously, f INTER
t is equal to 1 if all the inter-community sub-networks are complete graphs. If

there is no edges between the communities, i.e., f INTER
t = 0, then there is no risk of spreading

contagion from one community to another. In this case, each community can be viewed as a

separated network and the identification of the SIFIs reduces to find central institutions within

each community as in standard connectedness measures (Billio et al., 2012; Diebold and Yılmaz,

2014; Diebold and Yilmaz, 2015).

The normalizing constants, c1t and c2t , given in Equation 7, provide the total degree of the

sub-networks when the corresponding graphs are complete, and they are defined by the following

8
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equations

c1t =

Kt∑
k=1

nkt(nkt − 1), c2t =

Kt∑
k=1

∑
l 6=k

nktnlt. (8)

The weights, w1t and w2t, in Equation 6, are given by

w1t =
1

nt(nt − 1)
c1t, w2t =

1

nt(nt − 1)
c2t. (9)

They are functions of the number of nodes in each community and satisfy w1t + w2t = 1, ∀t.

By increasing the number of communities Kt, the importance of the inter-community density

increases (see red line in the left plot of Figure 2). For Kt > 2 the inter-community density is

more relevant than the intra-community in the whole connectivity of the network. We also study

the effect of the distribution of the community sizes on the contribution of the inter-community

density to the network density and find that (see right plot of Figure 2):

• a Dirac distribution, corresponds to the case of communities of equal size (solid);

• a uniform distribution, represents the case all community sizes are equally represented in

the network (dashed);

• a symmetric beta distributed community size, implies a community with a large size and

then various communities with smaller size (dotted).

Comparing the different lines (solid, dashed and dotted) in the left plot of Figure 2, one can see

that for Kt > 2 the largest weight for the inter-community density is associated to the uniform

distribution.

3 Empirical Analysis

We analyze the European financial market and its community structure during the period of

1996-2013 considering the model and community connectivity measures presented in Section

2.4 We discuss the community structure of the network on two specific moments: the Global

financial crisis and the European sovereign debt crisis. Finally, we perform an immunization

exercise on the European financial network during the European sovereign debt crisis showing

that removing the institutions with highest inter-community degrees is more effective than the

ones with the highest inter out community degrees.

4Further details on the estimation of the optimal number of blocks and the model selection according α are reported
in Appendix B.

9
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Figure 2: Intra- and inter-community densities (red and black lines, respectively, left plot) and
number of nodes nkt (right plot) per community k = 1, . . . , 50 (horizontal axis), assuming a
Dirac’s distribution, nkt ∝ nt/Kt (solid lines), a uniform distribution, nkt ∝ ntk (dashed lines)
and translated symmetric beta distribution, nkt ∝ nt(70− k)k (dotted lines).

3.1 Data Description

The dataset is composed of the daily closing price series at a daily frequency from 29th December

1995 to 16th January 2013. To cope with survivorship bias (Shumway, 1997), we include all

European financial institutions active and dead. Financial institutions are classified under the

Industry Classification Benchmark (ICB) which comprises four industry levels. The financial

industry is represented at the first level by the class 8000. We consider its four super-sectors

(second level):5 i) Banks (code 8300); ii) Insurance (code 8500); iii) Real Estate (code 8600)

and iv) Financial Services (code 8700).

The built database is suitable to represent the European financial systems since it covers a

total of 766 European financial firms6 traded in the largest European financial markets (core and

peripheral). The markets with the number of institutions in round brackets are: Austria (15),

Belgium (30), France (81), Germany (136), Greece (56), Ireland (5), Italy (95), Netherlands (4),

Spain (40) and United Kingdom (304).

We estimate dynamic networks of European financial institutions through Granger-causality

tests (Billio et al., 2012) on daily returns using a rolling window approach with a length of 252

observations (approximately 1 year) and obtain a total of 4197 adjacency matrices. 7

5See the ICB’s website: www.icbenchmark.com. The Industry Classification Benchmark document with Structure
and Definitions for the type of Industry (Financials Industry at Section 7.9) is available at http://www.ftse.

com/products/downloads/ICB_Rules.pdf.
6Data have been downloaded from DatastreamR©using Thomson Reuters Worldscope listsR©. The complete list is
available upon request to the authors.

7The estimations have been parallelized and implemented in Matlab on the SCSCF (Sistema di Calcolo Scientifico
Ca’ Foscari) cluster multiprocessor system which consists of 4 nodes; each comprises four Xeon E5-4610 v2 2.3GHz
CPUs, with 8 cores, 256GB ECC PC3-12800R RAM, Ethernet 10Gbit, 20TB hard disk system with Linux.

10
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3.2 Community Structure and Financial Bridges

In the presented framework, a community structure would indicate the existence of distinct

groups of nodes playing a different role in the network connectivity. It is worth noting that the

definition of community or block here is more general with respect to the usual assortativity

based definition where edges primarily exist within groups.

In a network with no community structure (e.g., one community), all financial institutions

show an homogeneous connectivity level and thus, a shock would hit all the system in the same

manner. Clearly, this does not imply the absence of systemic risk. Having the same patterns of

connectivity between the nodes, the robust-yet-fragile property could lead to a resilient network

when shocks are in a given range and into a fragile one when shocks are above that range.

Consequently, a strengthening in the community structure leads to a disintegration of the

financial network in many sub-networks where each block of institutions plays a different role

in terms of connectedness within and without the group. Different community connectivity

patterns form the network structure which is one (or a mixture) of the types defined in Section

2.1 and represented in Figure 1.

Given these premises, we analyze the community structure of the European financial network

along with the CISS (Hollo et al., 2012) as reported in Figure 3. The CISS is a composite

indicator of contemporaneous stress in the financial system released periodically by the European

Central Bank (ECB). As any classical financial stress indicator, it is useful in monitoring the

current level of distress in the financial system.
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Figure 3: The number of communities K (black solid line) and the CISS indicator (red dashed
line) by Hollo et al. (2012) during 1996-2013.
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The two series exhibit a significant and positive Spearman’s correlation equal to 0.61 indicat-

ing that during financial stress periods a strengthening of the structure is likely to be expected.8

We report in Figure 4 the size of the communities (shaded areas) in percentage over time and

show that the granularity of the community structure increases during financial stress periods.

From the graph, it can be observed a high degree of granularity in the network structure from

late-2007 to mid-2009 and from mid-2011 to late-2012 in the correspondence of the most acute

phases of the Global financial crisis and the European sovereign debt crisis, respectively. This

emphasizes once again that during the financial crises there has been a disintegration of the

financial network in different groups of institutions with distinct connectivity patterns in the

spread of contagion. Finally, we apply the new connectivity measures presented in Section 2.1
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Figure 4: Size of the European financial communities (shaded areas) in percentage during 1996-
2013. Each community has a different gray level.

on the European network. Figure 5 reports intra, inter communities and total network den-

sity measures where empirical correlations are equal to ρ̂intra,total(0.50), ρ̂inter,total(0.97) and

ρ̂intra,inter(0.30).

The total network density (f) is driven by the inter-community connectivity (f INTER) with

a residual role played by the intra-community one (f INTRA). This suggests a disassortative

structure of the network where the edges existing between the groups and thus, the community

bridges, may play a relevant role in the spread of contagion in the financial system.

As a further confirmation, we report in Figure 6 the relative weight of the intra community

(dashed line) and the inter-community (solid line) density which shows that except in the very

beginning of the sample, the first is higher in all the considered period.

8As robustness checks, we include in Appendix C the estimation of the optimal block numbers with different
window lengths.
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Given that the European financial network exhibits a robust interdependent community

structure, the identification of the SIFIs should not be reduced in terms of total connected-

ness but should instead be investigated by discriminating among intra and inter-community

connectedness.9

Jan-97 May-98 Oct-99 Feb-01 Jul-02 Dec-03 Apr-05 Sep-06 Jan-08 Jun-09 Oct-10 Mar-12
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Figure 5: Density measures of the European network for intra community density (light grey),
inter community density (grey) and total network density (dark grey) during 1996-2013.

Jan-97 May-98 Oct-99 Feb-01 Jul-02 Dec-03 Apr-05 Sep-06 Jan-08 Jun-09 Oct-10 Mar-12
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 6: Relative weights of intra community (dashed line) and inter community (solid line)
on the total network density during the period 1996-2013.

3.3 The Global Financial Crisis and the European Sovereign Debt Crisis

In the following section, we analyze the European financial network and its community structure

during the Global financial crisis and the European sovereign debt crisis. Having a directed

9For sake of space, we report connectivity measures such as community intra and inter, in and out degrees in the
Appendix D.
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financial network, we can distinguish a community as a shock transmitter or receiver through

the out inter-community degrees and in inter-community degrees, respectively. We attribute the

systemically importance to a community by considering its role in the spread of contagion in the

network, that is, the higher out inter-community degrees net of the in inter-community degrees

with concerning the other communities.

The Global financial crisis

We select from the inferred European dynamic network the adjacency matrix on November 2008

which corresponds to the 155th window. The aim is to analyze the European financial network

during the Global financial crisis originated from the subprime mortgage market in the United

States occurred from 2007 to 2008. Figure 7 includes the network with the community structures

(10 communities). Panel (a) shows the directed network graph where edges are concave and

clockwise directed while Panel (b) shows the adjacency matrix according to the community

membership. The network is composed by 365 financial institutions: 62 Banks (red nodes),

39 Insurances (blue nodes), 84 Real Estate companies (green nodes) and 180 financial services

institutions (black nodes) according to the ICB classification. The majority of the financial

institutions are traded in the United Kingdom (186), Italy (50), Germany (37) and France (30).

Table 1 reports the partitioned density according to the inter and intra linkages which shows

(a) Causality Network. (b) Adjacency matrix.

Figure 7: The European financial network (155th window) during the global financial crisis.
Edges color is reported according to the edges weight (see the colormap) while nodes color is
reported according to the ICB: banks (red), insurances (blue), financial services (green) and
real estate (black). Panel (a): Network diagrams. Edges are concave and clockwise directed
where the size of nodes is reported according to the market value for the top 10 largest financial
institution. Panel (b): Adjacency Matrix. Causality is meant from row i to column j.
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that the total density of the network is 20.44%. According to community connectivity measures,

Block 7 represents the systemically important financial community (SIFC) since it exhibits the

highest net out-inter community density (7.91%), fnet,INTRA. It can be observed that the

network exhibits a two core structure where one core (SIFC) spreads shocks almost exclusively

to another one (Block 6) and hence, the inter-linkages among two communities represent ideally

a bipartite network.

As reported in Table 3, Block 7 is composed by insurances (53.85% of the market), banks

(29.03%), Real Estate (26.19%) and Financial Services (16.11%). It is worth noting that this

block includes 6 out 10 (3 banks and 3 insurances) of the largest financial institution in terms of

market value Figure 7(a) and represents the largest community in terms of total market value as

reported in Table 2.10 This is particularly interesting since networks here are inferred using only

market returns for each financial institution and not other information such as market value is

not considered in the process. On the other hand, Block 6 is the community that largely receives

shocks from Block 7 (4.63%) and for the residual part by Block 9 (1.62%) as reported in Table 1.

Table 3 reports the European financial institutions according to the community member-

ships at the sub-sector level where the percentages describe the proportion of institutions of

each community in a given sector. The SIFC contains the majority of the insurances in the

market (53.85%) including nonlife insurances (33.33%) and life insurances (20.51%). The crit-

ical difference between life and nonlife insurances relies on the different time horizon of their

products. Life insurances have longer-term policies in their business model and hence, they

are longer-term investors. Generally, among other factors (i.e., a high leverage), investment

performance represents a significant determinant for both the type of insurances (i.e., common

exposure to sovereign and corporate bond risk).11 Finally, the receiver block (Block 6) contains

the largest group of institutions that are in the Financial services sector (35%) with a majority

of equity investment instruments (26.11%) which includes corporate closed-ended investment en-

tities such as investment trusts and venture capital trusts. The residual part includes Financial

Services (8.89%).

The European sovereign debt crisis

The global financial crisis is considered the trigger for the European sovereign debt crisis occurred

at the end of 2009 which brought a change in the asset prices and grew prospectively in the

10The weight of the 10 largest financial institutions are shown in Figure 7 using a different size of the vertex which
depends on their market value.

11See Gründl et al. (2017) for a discussion about portfolio investment strategies for insurances.
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Eurozone. Lane (2012) provides an exhaustive analysis of pre-crisis risk factors discussing the

relationship among the global financial crisis and the sovereign debt crisis.

In this regard, we select the adjacency matrix on April 2012 which corresponds to the

199th window of the dynamic network. Figure 8 includes the community structures (eight

communities). Panel (a) shows the directed network graph where edges are concave and clockwise

directed while Panel (b) shows the adjacency matrix according to the community membership.

The network is composed by 359 financial institutions: 58 Banks (red nodes), 33 Insurances

(blue nodes), 82 Real Estate companies (green nodes) and 186 financial services institutions

(black nodes). The majority of the financial institutions are traded in the United Kingdom

(173), Germany (58), Italy (44) and France (34). As shown in Table 4, the total density of the

(a) Causality Network. (b) Adjacency matrix.

Figure 8: The European financial network (199th window) during the European sovereign debt
crisis. Edges color is reported according to the edges weight (see the colormap) while nodes
color is reported according to the ICB: banks (red), insurances (blue), financial services (green)
and real estate (black). Panel (a): Network diagrams. Edges are concave and clockwise directed
where the size of nodes is reported according to the market value for the top 10 largest financial
institutions. Panel (b): Adjacency Matrix. Causality is meant from row i to column j.

network is 29.11% where Block 1 represents the SIFC since it exhibits the highest net out-inter

community density (10.71%), fnet,INTRA. Even in this case, the European financial network

exhibits a two cores structure where the SIFC (Block 1) spreads shocks mostly to another core

(Block 5). The SIFC represents the largest community in terms of market value as shown in

Table 5 and as during the global financial crisis, includes the majority of the insurances in the

market (51.52%) with both nonlife (27.27%) and life insurances (24.24%). The block is composed

by Insurances (51.52% of the total market), Banks (39.66%), Financial Services (30.65%) and
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Real Estate (19.51%) as reported in Table 6. It is worth noting that the SIFC includes all the top

ten financial institutions in terms of market value (8 banks and 2 insurances). Vice versa, Block

5 is the community that largely receives shocks from Block 1 (7.15%) and for a residual part

mostly by Block 8 (1.50%), Block 6 (1.27%) and Block 4 (1.22%) as reported in Table 4. This

block contains the largest group of institutions that are in the Financial services sector (34.41%)

and the Real Estate sector (34.15%) with almost equal weights at their sub-sector level. Finally,

Table 6 reports the European financial institutions according to the community memberships

at the sub-sector level where the percentages describe the proportion of institutions of each

community on a given sector. Once again, it highlights that the insurance industry played a

prominent role in the spread of systemic risks also during the European sovereign debt crisis.

4 Financial Bridges and Policy Implications

In this Section, we compare the standard and the presented community connectivity measures in

predicting financial losses. Moreover, we assess their impact on the European financial network

in terms of contagion. The aim is to determine if the inclusion of the community structure (i.e.,

financial bridges) in the European financial network provides a better measurement of financial

connectedness.

4.1 Early Warning Indicators

As seen in Section 3.2, the density of the network is driven mainly by the inter-community

connections which highlight the role of financial bridges in the spread of contagion. Following

Billio et al. (2012) and Acharya et al. (2017), we perform an out-of-sample analysis of the

presented community measures with respect to the usual network measures and compare their

predictive ability concerning future losses. In this regard, we define the variable MaxLoss, the

maximum loss incurred by a single institution within the next two years and use total out and

inter- (intra-) community out degrees as predictors in the linear model:

MaxLossi = c+ βXi + εi, εi
iid∼ (0, σ2),

where i = 1, . . . , n and Xi = {d−i , d
−,INTER
i , d−,INTRA

i } is expressed in relative value to make

the coefficients comparable. We perform the cross-sectional regressions sequentially from 2000

to 2012 and report in Figure 9 the adjusted R-squared, the magnitude and p-value of each

coefficient.
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The out-inter community degrees (dashed line) provide the best fitting over the total out

degrees (solid line) in more than the 93% of the total cases while the out-intra community degrees

(dashed line) provide the lowest performance in every period. At 5% significance level, the p-

value analysis shows a significance of 79% for the total out degrees (solid line), 85% for out-inter

community degrees (dashed line) and 13% for the out-intra community degrees (dotted line).

Clearly, this implies that the total out degrees represents improved significant determinants

of the MaxLoss variable. For the total out degrees and the out-inter community degrees, the

coefficient is negative in more than 99% of the total significant cases which further indicates

that the nodes with the highest out degrees incur into lower losses with respect to the other

nodes. The order of magnitude is always greater for the inter-community out degrees (dashed

line) with respect to the total out degrees (solid line) pointing out that losses for the firsts are

lower. These findings highlight the primary role of the community inter-linkages in spreading

shocks and represent a better early warning indicator for financial losses in the system with

respect to the (standard) total out degrees. As a further comparison, we include in Appendix E

the regression with the eigenvector centrality measure which confirms the previous results.12

4.2 Node impact on Contagion

Policy authorities act through prevention and mitigation measures to maintain financial stability.

When a systemic risk arises in the network, policy interventions should immunize the node-

spreaders in order to avoid the financial contagion. As stated in Salathé and Jones (2010), the

presence of a community structure significantly affects the dynamic of the disease, and in such

cases, immunization interventions should focus on community bridges instead of the nodes which

are highly connected to the whole network.

We perform a simple immunization exercise by switching off recursively the node with: i) the

highest total out degrees (global immunization); ii) the highest eigenvector centrality (centrality

immunization) and iii) the highest community inter out degrees (community immunization). We

make use of the average shortest path length (ASPL) as the evaluation criteria to compare the

impact of a node immunization on financial contagion.

The ASPL measures the average number of steps along the shortest paths for all possible

pairs of network nodes,

ASPLt =
[
nt(nt − 1)

]−1 nt∑
i,j

d(i, j), (10)

12We also perform the analysis for the total in and inter- (intra-) connections. Results for financial bridges confirm
what described for the out-connections and are available upon request to the authors.
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Figure 9: Adjusted R–squared (top), coefficient p-value (mid) and coefficient magnitude (bot-
tom) for the cross-sectional regressions where the dependent variable is the maximum loss in-
curred by a single institution within the next two years and the independent variable is alterna-
tively the total out degrees (solid line), the out-inter community degrees (dashed line) and the
out-intra community degrees (dotted line).
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where nt is the number of nodes in the network and d(i, j) is the shortest path from node i to

node j. The ASPL indicates the number of financial institutions that an institution has to affect

on average in order to transmit a shock to another institution which is not directly connected

with it.

With the immunization of a node, the mitigation of (financial) contagion succeeds if there is

an increase on the ASPL in the network, that is, the number of steps on average increases and

thus, network becomes more robust to shock propagation. Conversely, if the ASPL decreases,

the intervention is not only useless but harmful since the network is more exposed to financial

instability.

As an example of policy intervention, we perform the analysis for the three type of immu-

nizations on the financial network during the European sovereign debt crisis (199th window of

the estimated dynamic networks). Figure 10 shows the resulting ASPL after removing up to 15

nodes in the network. The community immunization (dashed red line) performs overall better

than the global immunization (solid black line) and the centrality immunization (dotted black

line). After the removal of the first node, the marginal contribution of each node is higher con-

cerning the other considered cases. Therefore, the immunization of the financial network with

a community structure is more effective through treatments on community bridges than usual

connectedness measures. In fact, total inter out degrees converges towards an ASPL value of

4.25 after the immunization of 15 nodes while the total out degrees and the eigenvector central-

ity reach a value of 4.19 and 4.20, respectively. As a robustness check, we compute ASPL on

all the period (210 networks) after removing 25 nodes. The ASPL is higher for the community

inter out degrees more than the 67% of the cases.

5 Conclusion

This paper analyses financial contagion allowing for community structures in the network. Ac-

cordingly, we show that the total connectedness measures can be decomposed in inter- and

intra-community connectedness providing a better description of the network connectivity pat-

terns. We provide evidence of an increasing number of financial communities during periods

of instability and identify financial bridges as responsible for spreading contagion through the

network. Our findings show that during the recent crises, the European financial network ex-

hibits a two cores structure with the presence of a community which contains the majority of

insurances in the market and acts mainly as a shock spreader to a second community. The
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Figure 10: Average shortest path length (ASPL) after removing sequentially the node(s) with
the highest total out degrees (solid black line), the highest eigenvector centrality (dotted black
line) and the highest inter-community out degrees (dashed red line).

results reveal that the largest inter-community degrees generated by financial bridges represent

a better early warning indicator for financial losses with respect to the total network degree.

Finally, we perform an immunization exercise showing that monitoring and adopting treatments

for financial bridges would represent a more effective mitigation policy than the one based on

total degree connectedness. This would help regulators’ and policymakers to respond promptly

to abrupt changes of an evolving financial system.
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A Modelling Communities

In this Section, we introduce time-varying stochastic block models for community detection and

present a inference approach.

A.1 Stochastic Block Models

We extend to a dynamic context the SBM and weighted SBM models given in Aicher et al.

(2014).

Let Gt = (Vt, Et), t = 1, . . . , T be a time sequence of networks, with vertex set Vt and edge set

Et ⊂ Vt × Vt, and let At be the nt × nt adjacency matrix of the network Gt, which contains

binary values representing edge existence, i.e. Aij,t ∈ {0, 1} with Aij,t = 1 if (i, j) ∈ Et and

Aij,t = 0 otherwise, i, j = 1, . . . , nt where nt is the cardinality of Vt.

We assume t0 < t1 < t2 < . . . < tM < tM+1, with t0 = 1 and tM+1 = T , is a sequence of

change points. The network parameters and the label vector are constant within a sub-period,

but change over sub-periods [tm−1, tm], and the edge distribution for the network at time t is

g(At|z,θ) =



f(At|z1,θ1) 0 < t ≤ t1

f(At|z2,θ2) t1 < t ≤ t2

. . . . . .

f(At|zM ,θM ) tM < t ≤ T

where f(A|zM ,θM ) is an edge probability model discussed in the following paragraph, θ =

(θ1, . . . ,θM ) is the collection of period-specific parameters and z = (z1, . . . , zM ) is the collection

of period-specific latent variable vectors.

Here, we present the models for the edge probabilities and drop for the sake of simplicity

the time subscript t. In the basic SBM, there are K latent groups of nodes and the probability

pij of an edge between nodes i and j, i.e., Pr ((i, j) ∈ E) depends on the groups the two nodes

belong, that is

pij = θ
Aij
zizj (1− θzizj )1−Aij (11)

i, j = 1, . . . , n, where zi ∈ {1, . . . ,K} indicates which group the node i belongs to. The existence

probability of an edge Aij is given by the parameter θzi,zj that depends only on the membership

of nodes i and j. Note that, in Equation 11, the Aijs are conditionally independent given

zi, i = 1, . . . , n and θkl, k, l = 1, . . . ,K. The probability that zi = k is equal to γik, with
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k = 1, . . . ,K. We assume γik equals to γk. The number of latent groups, K, is a free parameter

that must be chosen before the model and it controls the model’s complexity.

Let z = (z1, . . . , zn) be the (n × 1) vector that contains the labels of the nodes. Then,

vector z represents the partition of the nodes into K blocks, and each pair of groups (k, l)

represents a bundle of edge between the groups. The parameter θ in Equation 11 represents

a (K ×K) matrix, the affinity matrix, with (l, k)-element the edge probability parameter θlk.

From Equation 11, the joint probability distribution of the edge existence for a given network

G can be written as follows:

f(A|z,θ) =
∏

(i,j)∈E

exp

(
Aij · log

(
θzizj

1− θzizj

)
+ log(1− θzizj )

)
,

which belongs to the exponential family, since it has the following kernel

f(A|z,θ) ∝ exp

 ∑
(i,j)∈E

τ (Aij) · η(θzizj )

 , (12)

where τ (x) = (x, 1)′ is the vector-valued function of sufficient statistics of a Bernoulli distribution

and η(θ) = (log(θ/(1 − θ)), log(1 − θ)) is a vector-valued function of natural parameters. This

is a basic and classical SBM for unweighted networks since, as they are defined, the functions τ

and η produce binary edge values.

The latent allocation variables zi follow a discrete uniform distribution

zi
i.i.d.∼ U{1,...,K}, i = 1, . . . , n, (13)

which implies γk = 1/K. For the edge probability parameter θ, we assume a conjugate non-

informative prior, that is

θkk′
i.i.d.∼ U[0,1], k, k′ = 1, . . . ,K. (14)

With a different and appropriate choice of the functions τ and η, a WSBM can be established

by weights that are drawn from an exponential family distribution over the domain of τ . In this

case, each θzizj = (µzizj , σzi,zj )
′ denotes the parameters governing the weight distribution of the

edge bundle (zizj) and the edge weight probability is

f(A|z,θ) ∝ exp

 ∑
(i,j)∈W

τ (Aij) · η(θzizj )

 , (15)
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where the pair of functions (τ ,η) for the real valued edge weights is needed.

Networks with real valued edge weights can be modelled by an exponential family distri-

bution. We consider a normal distribution with parameters µ and σ2 and define with τ (x) =(
x, x2, 1

)
the vector of sufficient statistics and with η(θ) = (µ/σ2,−1/(2σ2),−µ2/(2σ2)) the nat-

ural parameter vector. The latent allocation variables zi follow a discrete uniform distribution,

that is

zi
i.i.d.∼ U{1,...,K}, i = 1, . . . , n. (16)

For the parameter θ, we assume a conjugate non-informative prior, that is

σ2kk′
i.i.d.∼ 1

σ2kk′
IR+(σ2kk′), µkk′

i.i.d.∼ IR(µkk′), k, k′ = 1, . . . ,K. (17)

The SBM and pure WSBM models produce complete graphs which can be an undesirable features

in large dimension networks. In order to model sparse networks by SBM and WSBM, Aicher

et al. (2014) assumes Aij = 0 as a directed edge from node i to j is existed with zero weight,

thus parse networks can be modelled with two types of information, edge existence and edge

weight values, in together by a simple tuning parameter, that is:

f(A|z,θ) ∝ exp

α ∑
(i,j)∈E

τ e(Aij) · ηe(θ
(e)
zizj ) + (1− α)

∑
(i,j)∈W

τw(Aij) · ηe(θ
(w)
zizj )

 (18)

where the pair (τ e,ηe) denotes the family of edge existence distribution and the pair (τw,ηw)

denotes the family of edge-weight distribution, α ∈ [0, 1] is a simple tuning parameter that

combines their contributions in the edge probability. E is the set of observed interactions

(including non-edges) and W is the set of weighted edges with W ⊂ E.

If α = 1 (Equation 18), then the model reduces to SBM in Equation 11, and if α = 0,

the model ignores edge existence information and we refer to such model as the pure WSBM

(pWSBM). When 0 < α < 1, the edge distribution combines both information set, and if α = 0.5

the model is called balanced WSBM (Aicher et al., 2014).

For the SBM part, in Equation 18, we assume τ e(x) = (x, 1)′ and ηe(θ) = (log(θ/(1 −

θ)), log(1 − θ)). For the pure WSBM part, in Equation 18, we assume τw (x) =
(
x, x2, 1

)
and

ηw(θ) = (µ/σ2,−1/(2σ2),−µ2/(2σ2)) the natural parameter vector. Finally we define with

θ = {P,µ,σ} the parameter vector with P = (θij)ij , µ = (µ1, . . . , µK) and σ = (σ1, . . . , σK).
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A.2 Bayesian Inference for Stochastic Block Models

Let Am−1:m be the collection of matrices from time tm−1 + 1 to time tm, i.e. Am−1:m =

{Atm−1+1, . . . , Atm}. In our change-point models, we assume in each sub-sample the alloca-

tion and parameter vectors, zm and θm, respectively, are constant, thus the likelihood function

of our SBM is

L(A1:M |z1:M ,θ1:M ) ∝
M∏

m=1

exp

∑
ij

τ e

(
Āij,m

)
· ηe(θk,zimzjm)

 (19)

where Āij,m is the (i, j)-the element of the matrix

Ām =

tm∑
t=tm−1+1

At (20)

and τ e (x) = (x, d) is the vector-valued function of sufficient statistics and ηe(θ) = (log(θ/(1−

θ)), log(1 − θ)) is the vector-valued function of natural parameters. See subsection A.3 for a

proof.

Since for the WSBM each edge bundle (zimzjm) is now parametrized by a mean and variance,

θzimzjm = (µzimzjm , σ
2
zim,zjm), the likelihood of the pure WSBM can be written as:

L(A1:M |z1:M ,θ1:M ) ∝
M∏

m=1

exp

∑
ij

τw

(
Āij,m

)
· ηw(θk,zimzjm)

 (21)

where τw (x) =
(
x, x2, d

)
and ηw(θ) = (µ/σ2,−1/(2σ2),−µ2/(2σ2)). See subsection A.3 for a

proof.

The likelihood of the general WSBM can be obtained by combining Equation 19 and Equa-

tion 21 with combining parameter α ∈ [0, 1], that is.

L(A1:M |z1:M ,θ1:M ) = exp

α
 M∑

m=1

∑
ij

τ e

(
Āij,m

)
· ηe(θm,zimzjm)


+ (1− α)

 M∑
m=1

∑
ij

τw

(
Āij,m

)
· ηw(θm,zimzjm)

 (22)

where the pair (τ e,ηe) denotes the family of edge existence distribution and the pair (τw,ηw)

denotes the family of edge-weight distribution. E is the set of observed interactions (including

non-edges) and W is the set of weighted edges with W ⊂ E and α is a tuning parameter which
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combines the contributions of edge existence and edge weight information in the likelihood

function. See subsection A.3 for a proof.

The posterior distribution of model in Equation 18 is intractable, but can be approximated

by using several methods. Markov Chain Monte Carlo (MCMC) can be an efficient approach

with a high computational cost. Thus, in this paper, we follow Aicher et al. (2014) and ap-

ply variational Bayes methods to circumvent this issue. Variational Bayes approximation has

been successfully applied in many fields such as neural science (e.g. Penny et al., 2003), and

biostatistics (e.g. Teschendorff et al., 2005) where high dimensional models or large datasets

make MCMC methods are not feasible. Variational Bayes approximation is now popular also in

statistics (e.g., see McGrory and Titterington (2007), Titterington (2004), Wand et al. (2011),

Pham et al. (2013),Huang et al. (2013)). See also Blei et al. (2017) for an up-to-date review.

The parameters K, number of blocks, and α, tuning parameter, are crucial in our application.

Selection of optimal K and α can be achieved by applying Bayes factor. The selection of the

tuning parameter, α, is left and we considered in the application three different values of α: 0

(pure WSBM), 0.5 (balanced WSBM) and 1 (basic SBM).

A.3 Proofs of the Results in Section A.2

i. Proof of the results in Eq. 19

For the observations in the sample period from tm−1 + 1 to tm the likelihood is

L(Am:m+1|zm,θk) =

tm∏
t=tm−1+1

∏
(i,j)∈Em

θ
Aij,t
zimzjm(1− θm,zimzjm)1−Aij,t ,

=

n∏
i=1

n∏
j=1

(θm,zimzjm)

tm∑
t=tm−1+1

Aij,t

(1− θm,zimzjm)

tm∑
t=tm−1+1

(1−Aij,t)

(23)

which can be written in exponential form as

L(Am:m+1|zm,θk) =

n∏
i=1

n∏
j=1

exp

 tm∑
t=tm−1+1

Aij,t · log θm,zimzjm +

(
n∑
t

(1−Aij,t)

)
· log(1− θm,zimzjm)


=

n∏
i=1

n∏
j=1

exp

 tm∑
t=tm−1+1

Aij,t · log

(
θm,zimzjm

1− θm,zimzjm

)
+ d · log(1− θm,zimzjm)


By using the exponential family representation of the density the above equation can be written
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as

L(Am:m+1|zm,θk) ∝ exp

 n∑
i=1

n∑
j=1

tm∑
t=tm−1+1

τ ∗e (Aij,t) · ηe(θm,zimzjm)

 (24)

∝ exp

 n∑
i=1

n∑
j=1

τ e

(
Āij,m

)
· ηe(θm,zimzjm)

 (25)

with τ ∗e(x) = (x, 1), τ e(x) = (x, d) and ηe(x) = (log(x/(1− x)), log(1− x)).

Finally, the likelihood function of the change-point SBM is

L(A1:M |z1:M ,θ1:M ) ∝
M∏

m=1

L(Am:m+1|zm,θm)

∝ exp

 M∑
m=1

n∑
i=1

n∑
j=1

τ e

(
Āij,m

)
· ηe(θm,zimzjm)

 (26)

�

ii. Proof of the results in Eq. 21

L(Am:m+1|zm,θk) =

tm∏
t=tm−1+1

∏
(i,j)∈Wm

N
(
Aij,t|µm,zimzjm , σ

2
m,zimzjm

)

=
n∏

i=1

n∏
j=1

exp

 tm∑
t=tm−1+1

Aij,t ·
µm,zimzjm

σ2m,zimzjm

−
tm∑

t=tm−1+1

A2
ij,t ·

1

2σ2m,zimzjm

− d ·
µ2m,zimzjm

2σ2m,zimzjm


∝ exp

∑
ij

τw

(
Āij

)
· ηw(θm,zimzjm)


where τw (x) =

(
x, x2, d

)
and ηw(θ) = (µ/σ2,−1/(2σ2),−µ2/(2σ2)). Finally, the likelihood

function of the change-point pure WSBM is

L(A1:M |z1:M ,θ1:M ) ∝
M∏

m=1

L(Am:m+1|zm,θm)

∝ exp

 M∑
m=1

n∑
i=1

n∑
j=1

τw

(
Āij

)
· ηw(θm,zimzjm)

 (27)

�

iii. Proof of the results in Eq. 22
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Following the same line as in the proof of Eq. 19 and Eq. 21 we obtain

L(Am:m+1|zm,θk) ∝ exp

∑
ij

τ e

(
Āij,m

)
· ηe(θm,zimzjm) +

∑
ij

τw

(
Āij

)
· ηw(θm,zimzjm)


the likelihood function of the change-point WSBM is

L(A1:M |z1:M ,θ1:M ) ∝
M∏

m=1

L(Am:m+1|zm,θm)

∝ exp

 M∑
m=1

∑
ij

τ e

(
Āij,m

)
· ηe(θm,zimzjm) +

M∑
m=1

∑
ij

τw

(
Āij

)
· ηw(θm,zimzjm)

 (28)

�
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B Optimal Number of Block and Model Selection

In this section, we consider three settings of the WSBM: i) the SBM with α = 1; ii) the balanced

WSBM with α = 0.5 and iii) the pure WSBM with α = 0. First, we select the optimal number

of blocks for each window obtained with the three considered models and then compare the

community structure across the models. Second, we perform the model selection according

to their predictive ability through the tuning parameter α, and we discuss the optimal block

numbers as an indicator of systemic risk.

B.1 Optimal Number of Blocks

We select the optimal number of blocks through the marginal log-likelihoods approximated by

the lower bound, G(q), of each model and then, we compare them by varying the number of

communities, K, from 1 to the number of total nodes in the network n. The optimal number

12/95 09/98 05/01 02/04 11/06 08/09 05/12 02/15
0

2

4

6

8

10

12
SBM (alpha=1)

Balanced WSBM (alpha=0.5)

Pure WSBM (alpha=0)

Figure 11: The optimal number of latent blocks, K, over time: black dash-dot line (α = 1), red
solid line and blue dashed line represent α = 0.5 and α = 0 respectively.

of latent blocks over time with three different values of tuning parameter α are reported in

Figure 11. It is observable that the optimal number of blocks of all the three considered models

increases during crisis periods reaching their highest levels. Clearly, the optimal block number

depends on the specified model. Mostly, the values of the optimal block number with α = 1

and α = 0 act as an upper and lower bound for the model α = 0.5, respectively. The optimal

block number reaches its highest level (10) in 50 windows for the SBM (α = 1) model while the

balanced WSBM (α = 0.5) reaches this level only in 13 windows. In the pure WSBM (α = 0),

the highest number of optimal block is 7. The series is reported in Table 7.

We proceed with the selection of the model by comparing the SBM (α = 1), the balanced

WSBM (α = 0.5) and the pure WSBM (α = 0), and then we discuss the selection of tuning

parameter, α. We fix the number of blocks K equal to 4 in order to make a viable comparison
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With α = 1

K Windows Percent

2 11 5.26%
3 7 3.35%
4 47 22.49%
5 37 17.70%
6 18 8.61%
7 3 1.44%
8 14 6.70%
9 22 10.53%
10 50 23.92%

With α = 0.5

K Windows Percent

2 15 7.18%
3 28 13.40%
4 51 24.40%
5 25 11.96%
6 22 10.53%
7 15 7.18%
8 22 10.53%
9 18 8.61%
10 13 6.22%

With α = 0

K Windows Percent

2 53 25.36%
3 60 28.71%
4 31 14.83%
5 22 10.53%
6 27 12.92%
7 10 4.78%
8 6 2.87%
9 0 0.00%
10 0 0.00%

Table 7: The optimal block numbers of the models, SBM (α = 1), balanced WSBM (α = 0.5)
and pure WSBM (α = 0).

and show the structural difference of the communities among considered models. The 18th

network is obtained from SBM (α = 1), Balanced WSBM (α = 0.5) and Pure WSBM (α = 0)

and reported in Figure 12. The standard deviation of edge weights for the WSBM is rather lower

than the ones of SBM (α = 1) since the model learns from both edge existence and edge weight

information. In pure WSBM (α = 0), the blocks are rather homogeneous in terms of in and out

degree as in Figure 12(c)-(d))which is quite expected since pure WSBM (α = 0) learns only from

the edge weight information. Therefore, except for the pure WSBM, each block has different

connectivity characteristics in SBM and balanced WSBM networks. On the other hand, each

block has different edge weight level characteristics in pure WSBM (see Figure 12(c)-(d)).

B.2 Model Selection and α-Calibration

The selection of the tuning parameter (α) represents a crucial step in terms of modeling decision.

The ideal choice should prefer the model which can exploit all the available information such as

connectedness and edge weights information. Thus, we compare the performances of the models

in terms of edge and edge weight prediction performances to show the ability of each model. The

combined forecast method introduced in Bates and Granger (1969) is applied by giving equal

weights to each of individual forecasts of SBM (α = 1), WSBM (α = 0.5) and pure WSBM

(α = 0). To show the contribution of each model’s forecast performance out of the combined

forecast for each window, the following calculation is done:

Wit =
MSE−1it
3∑

i=1
MSE−1it

, i = 1, 2, 3 and t = 1, 2, . . . , 209 (29)
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(a) SBM (α = 1)
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(b) SBM Adjacency Matrix

(c) Balanced WSBM (α = 0.5)
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(d) Balanced WSBM Adjacency Matrix

(e) Pure WSBM (α = 0)
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(f) Pure WSBM Adjacency Matrix

Figure 12: The European financial network (18th window) on May 1998.
Edges color is reported according to the edges weight (see the colormap) while nodes color is
reported according to the ICB: banks (red), insurances (blue), financial services (green) and
real estate (black). Left Panels: Network diagrams. Edges are concave and clockwise directed
where the size of nodes is reported according to the market value for the top 10 largest financial
institution. Right Panels: Adjacency Matrix. Causality is meant from row i to column j.
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where t represents the number of the window, tth window, MSE indicates average mean square

error, and i is the model type: i = 1 denotes SBM (α = 1), i = 2 balanced WSBM (α = 0.5)

and i = 3 pure WSBM (α = 0). Wit indicates the relative forecast performance of model i at

the tth window. Therefore, by Equation 29, Wit > W−it indicates the best forecast performance

at window t is model.

The relative forecast performances of all the models are presented in Figure 13 by combined

forecast method. The balanced WSBM (α = 0.5) performs better on edge and edge weight

prediction tasks (see Figure 13(a)). Besides, we analyze the features of the models in detail and

report results on edge existence, and edge weights predictions separately in Figure 13(b)-(c).

As shown in Figure 13(b), the SBM and the balanced WSBM prove to be the most accurate

models. As expected, the SBM show a better predictive ability in edge existence with respect

to the balanced WSBM (α = 1) given it only accounts for edge existence. Not surprisingly,

the poorest model on edge prediction task is the pure WSBM (α = 0) which considers only

weight existence. On the edge weights prediction task, however, the pure WSBM (α = 0) is

the most accurate, often by a large margin and it is also expected well because it is modeled

to learn only from edge weight information (see Figure 13(c)). The balanced WSBM (α = 0.5)

also performs quite accurate on the edge weight prediction task as nearly as the pure WSBM

(α = 0). The SBM (α = 1), however, is the worst model on edge weight prediction task which

is quite expected by construction.

In general, the SBM (α = 1) is the best model for the performance of edge prediction but

very poor on edge weight predictions. The pure WSBM performs accurate on weight prediction

but it is very poor on edge prediction. However, the balanced WSBM is the only model which

performs well on both tasks (see Figure 13). It performs as well as the SBM in edge prediction

and substantially better than the SBM in edge weight prediction. In other words, the balanced

WSBM is a more powerful model either than the SBM and pure WSBM in terms of prediction

performances.

40



 Electronic copy available at: https://ssrn.com/abstract=3178053  Electronic copy available at: https://ssrn.com/abstract=3178053 

Dec.95 Sep.98 May.01 Feb.04 Nov.06 Aug.09 May.12 Feb.15
0.55

0.6

0.65

0.7

0.75

0.8

SBM (alpha=1)

Balanced WSBM (alpha=0.5)

Pure WSBM (alpha=0)

Dec.95 Sep.98 May.01 Feb.04 Nov.06 Aug.09 May.12 Feb.15
0.26

0.28

0.3

0.32

0.34

0.36

0.38

0.4

SBM (alpha=1)

Balanced WSBM (alpha=0.5)

Pure WSBM (alpha=0)

Dec.95 Sep.98 May.01 Feb.04 Nov.06 Aug.09 May.12 Feb.15
0.15

0.2

0.25

0.3

0.35

0.4

0.45

SBM (alpha=1)

Balanced WSBM (alpha=0.5)

Pure WSBM (alpha=0)

Figure 13: Edge existence and weight predictions performances of the models: a) Edge existence
and edge weight prediction performances of the models (Top panel); b) Performances of the
models only on edge existence predictions (Mid panel) and c) Performances of the models only
on edge weight predictions (Bottom panel).
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C Robustness Checks

As a robustness check, we estimate the optimal block numbers with different window lengths

of 5, 10, 15, 20, 25 and 30 business days. As shown in Figure 14, the dynamic of the optimal

number of K is not affected and remains stable with different window lengths.
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(a) Optimal block numbers of
Balanced WSBM with win-
dow widths of 5 business
days.
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(b) Optimal block numbers of
Balanced WSBM with win-
dow widths of 10 business
days.
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(c) Optimal block numbers of
Balanced WSBM with win-
dow widths of 15 business
days.
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(d) Optimal block numbers of
Balanced WSBM with win-
dow widths of 20 business
days.
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(e) Optimal block numbers of
Balanced WSBM with win-
dow widths of 25 business
days.
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(f) Optimal block numbers of
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Figure 14: Robustness of the optimal number of blocks with different non-overlapping window
widths
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D Additional Connectivity Measures

In this section, we report in Figure 15 additional connectivity measures such as in(out), in(out)-

inter and in(out)-intra degrees.
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Figure 15: 95% high density region (gray area) and the cross-section mean (solid blue line) of
total in(out) degrees (first/forth panel), in(out)-inter degrees (second/fifth panel) and in(out)-
intra degrees (third/sixth panel) for the European financial network over time.
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E Early warning indicator using eigenvector centrality
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Figure 16: Adjusted R–squared (top), coefficient p-value (mid) and coefficient magnitude (bot-
tom) for the cross-sectional regressions where the dependent variable is the maximum loss in-
curred by a single institution within the next two years and the independent variable is al-
ternatively the out-inter community degrees (solid line) and the eigenvector centrality (dashed
line). See Equation 4.1. Note: The coefficient magnitude are reported on the left y-axis for the
out-inter community degrees and on the right y-axis for the eigenvector centrality.
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