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Non-Technical Summary 
 
 
Following the classical work by Merton (1969, 1971), most papers that study consumption-
portfolio decisions disregard money. However, as for instance pointed out by Obstfeld and Rogo 
(1996), p. 513, “many of the most intriguing and important questions in international finance 
involve money". Now, there are several ways to take money into account. One approach 
assumes that money enters the utility function. This idea of modeling preferences for liquidity is 
well established. Starting with Sidrauski (1967) and Brock (1974), a strand of macroeconomic 
literature uses “money in the utility function" to address economic problems involving monetary 
issues. Intuitively, this approach could be justified by the implicit assumption that the agent has 
utility from both consumption and leisure. Real money balance thus enters the utility function 
indirectly since agents save time in conducting their transactions when holding cash. 
Despite its widespread use in the theory of monetary policy, a rigorous treatment of 
consumption-portfolio decisions with preferences for cash is missing. Our paper fills this gap and 
studies a canonical consumption-portfolio problem of a household with these preferences. We 
provide closed-form solutions in both the finite- and infinite-horizon case and also prove formal 
verification theorems showing that these solutions are indeed optimal.  
We find that in the finite-horizon setting preferences for cash lead to time-dependent risky 
portfolio shares that are decreasing in age for reasonable calibrations. Such a pattern is 
qualitatively in line with rules of thumb that the risky share should decrease in age. It is also 
supported by recent empirical evidence showing that households who participate in the stock 
market have high and fairly constant risky shares during young ages, while investors reduce 
their risky share at a steady pace from about age 45 until they reach retirement (see Fagereng, 
Gottlieb, and Guiso (2017)). 
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Consumption-Portfolio Choice with Preferences for Cash

Abstract: This paper studies a consumption-portfolio problem where money en-

ters the agent’s utility function. We solve the corresponding Hamilton-Jacobi-

Bellman equation and provide closed-form solutions for the optimal consump-

tion and portfolio strategy both in an infinite- and finite-horizon setting. For

the infinite-horizon problem, the optimal stock demand is one particular root

of a polynomial. In the finite-horizon case, the optimal stock demand is given

by the inverse of the solution to an ordinary differential equation that can be

solved explicitly. We also prove verification results showing that the solution

to the Bellman equation is indeed the value function of the problem. From an

economic point of view, we find that in the finite-horizon case the optimal stock

demand is typically decreasing in age, which is in line with rules of thumb given

by financial advisers and also with recent empirical evidence. Our results are

robust to introducing recursive utility.

Keywords: consumption-portfolio choice, money in the utility function, stock

demand, stochastic control, recursive utility

JEL-Classification: G11, C61
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1 Introduction

Following the classical work by Merton (1969, 1971), most papers that study consumption-

portfolio decisions disregard money. However, as for instance pointed out by Obstfeld and

Rogoff (1996), p. 513, “many of the most intriguing and important questions in international

finance involve money”. Now, there are several ways to take money into account. One approach

assumes that money enters the utility function. This idea of modeling preferences for liquidity

is well established. Starting with Sidrauski (1967) and Brock (1974), a strand of macroeconomic

literature uses “money in the utility function” to address economic problems involving monetary

issues.1 Recent papers in financial economics applying this approach involve Balvers and Huang

(2009) and Gu and Huang (2013), among others. Intuitively, this approach could be justified

by the implicit assumption that the agent has utility from both consumption and leisure. Real

money balance thus enters the utility function indirectly since agents save time in conducting

their transactions when holding cash.

Despite its widespread use in the theory of monetary policy, a rigorous treatment of consumption-

portfolio decisions with preferences for cash is missing. Our paper fills this gap and studies

a canonical consumption-portfolio problem of a household with these preferences. We provide

closed-form solutions in both the finite- and infinite-horizon case and also prove formal verifi-

cation theorems showing that these solutions are indeed optimal. For the infinite-horizon case,

the optimal stock demand is characterized by a polynomial. More precisely, it is one particular

root of this polynomial. For the finite-horizon case, we show that the optimal stock demand

is given by the inverse of the solution to an ordinary differential equation. The solution to

the differential equation can be calculated explicitly. Since individual optimality of household

decisions is part of every general equilibrium analysis, our analysis also contributes to this field.

From an economic point of view, we find that in the finite-horizon setting preferences for cash

lead to time-dependent risky portfolio shares that are decreasing in age for realistic calibrations.

Such a pattern is qualitatively in line with rules of thumb that the risky share should decrease in

age. It is also supported by recent empirical evidence showing that households who participate

in the stock market have high and fairly constant risky shares during young ages, while investors

reduce their risky share at a steady pace from about age 45 until they reach retirement (see

Fagereng, Gottlieb, and Guiso (2017)). Finally, we also study the decision problem of an agent

who has recursive utility and preferences for cash. In this setting, we provide evidence that our

1See, e.g., Obstfeld and Rogoff (1996), p. 530, for more details and references. Google Scholar reports more

than 1,600 citations for Sidrauski (1967) and more than 600 for Brock (1974).
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findings are robust to varying the elasticity of intertemporal substitution.

Our paper is related to Dixit and Goldman (1970) who also assume that money enters the

agent’s utility. However, they consider a discrete-time setup and analyze first-order conditions

only. In contrast to our paper, they cannot solve the model further and do not provide closed-

form solutions or a verification theorem. Other related papers that assume that money provides

utility are Fama and Farber (1979) and LeRoy (1984a,b). Fama and Farber (1979) study an

economy where the government provides money supply in a partial equilibrium model while

LeRoy (1984a) and LeRoy (1984b) consider a similar general equilibrium setup. An alternative

way to derive a demand for money is the cash-in-advance approach. In this approach, money is

necessary to make transactions and does not directly affects the utility (see, e.g., Lucas (1982)

and Svensson (1985)).

The remainder of the paper is structured as follows: Section 2 describes our framework. Sec-

tion 3 provides and solves the Hamilton-Jacobi-Bellman equation of the agent’s consumption-

portfolio problem. It also studies some properties of the first-order conditions. Sections 4 and 5

analyze the infinite- and finite-horizon case in detail and derive the candidates for the optimal

controls. Section 6 shows that these candidates are indeed optimal and proves the correspond-

ing verification results. Section 7 studies the decision problem of an agent with recursive utility.

Section 8 provides numerical examples both for time-additive and recursive utility. Section 9

concludes. All proofs can be found in the Appendix.

2 Framework

We consider a canonical portfolio problem where the agent can hold cash or invest in a stock

index (short: stock). The dynamics are given by2

dM = Mrdt,

dS = S[µdt+ σdW ].

The agent’s wealth satisfies the dynamic budget constraint

dX = X[(r + πη)dt+ σπdW ]− cdt (2.1)

where η = µ − r and σ > 0 are the stock’s excess return and volatility, π is the proportion

invested in stock, and c denotes consumption. The agent maximizes expected utility from

2For notational convenience, we omit time indices whenever it is not necessary for clarity.
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consumption and terminal wealth, but has also preferences for holding cash. This is because

cash balances, by virtue of their liquidity, provide services (see, e.g., Obstfeld and Rogoff (1996)

and the references therein). Therefore, the agent maximizes

sup
π,c

∫ T

0

e−δtE[u(ct, Xt(1− πt))] dt+ e−δTE[U(XT , XT (1− πT ))].

Notice that Xt(1−πt) equals the amount invested in cash at time t. We assume that the agent’s

utility functions are given by

u(c, `) =
1

1− γ
(cβ`1−β)1−γ, U(x, `) =

1

1− γ
(xα`1−α)1−γ,

i.e. he has a power utility function where the trade-off between consumption c or wealth x and

liquid funds ` is measured by a Cobb-Douglas function. The constants α ∈ (0, 1] and β ∈ (0, 1)

can be interpreted as weights.3 For α = 1, we obtain standard bequest U(x) = x1−γ/(1− γ) as

a special case. Throughout, we make the standing assumption that the risk aversion coefficient

satisfies

γ > 1. (2.2)

This requirement is imposed since risk aversions below one are not reasonable from an economic

point of view.4 Besides, we assume that the agent’s optimal stock demand in an ordinary Merton

(1969, 1971) problem were positive, i.e.5

m ≡ η

γσ2
> 0. (2.3)

From an economic point of view, this assumption is not restrictive. The condition m ≥ 0 is

only violated if the expected excess return is negative, which is unrealistic and not in line with

empirical estimates for major stock markets (e.g. US stock market). The case m = 0 is trivial

in our setting since even without preferences for cash the agent invests all his funds in the

money market account. Therefore, preferences for cash have no effect on his portfolio decisions

and we disregard this case. Finally, for simplicity we assume that

r ≥ − δ

γ − 1
, (2.4)

3We exclude β = 1 since then the agent has no intermediate preferences for cash, which is the standard case

if α = 1. This avoids several case distinctions. The case β = 1 and α ∈ (0, 1) is not particular interesting and

thus disregarded.
4See, e.g., Munk (2013), pp. 175ff.
5Table 1 summarizes all relevant constants that are defined in this paper.
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which is always satisfied for positive interest rates and can only be violated if the interest rate

is sufficiently negative.6

3 Bellman Equation

The Hamilton-Jacobi-Bellman equation (short: Bellman equation) for our problem is given by

0 = sup
π,c

{
Gt + xrGx + xπηGx + 0.5x2σ2π2Gxx − cGx + u(c, x(1− π))− δG

}
(3.5)

with terminal condition G(T, x) = U(x, x(1−π(T ))). The first-order condition for consumption

becomes

c = β
1
κ (x(1− π))

(β−1)(γ−1)
κ G

− 1
κ

x , (3.6)

where κ ≡ 1 + β(γ − 1) > 0. The first-order condition for stock is

π =

(
η

σ2
− 1− β

β

1

1− π
c

x

)
−Gx

xGxx

. (3.7)

Representation (3.7) already indicates that the stock demand in our setting is reduced relatively

to the ordinary model without preferences for cash since the second term in the bracket reduces

the stock demand. This is because the agent is willing to give up part of the stock’s excess

return to hold cash. In fact, for a finite-horizon setting this generates a life-cycle pattern since

the implicit price of holding cash typically becomes smaller over time. In the latter sections,

we will see that this intuition can be formalized.

Furthermore, notice that these first-order conditions are still implicit and we will derive an

explicit equation for the stock demand π in the latter sections, which then also allows us to

calculate the optimal consumption via (3.6). By setting β = 1 we can recover the standard

results of models without preferences for cash. Using the above relations, we can calculate some

terms in the Bellman equation more explicitly

cGx = β
1
κ (x(1− π))

(β−1)(γ−1)
κ G

β(γ−1)
κ

x , (3.8)

u(c, x(1− π)) = 1
1−γβ

β(1−γ)
κ (x(1− π))

(β−1)(γ−1)
κ G

β(γ−1)
κ

x .

Using these results we can eliminate c in the Bellman equation:

0 = sup
π

{
Gt + xrGx + xπηGx + 0.5x2σ2π2Gxx − δG+K(x(1− π))

(β−1)(γ−1)
κ G

β(γ−1)
κ

x

}
6Actually, condition (2.4) could be relaxed further. This condition is sufficient to ensure that D > 0 (see

equation (B.44)). Instead we could also impose the condition that D is positive.
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with

K ≡ 1
1−γβ

β(1−γ)
κ − β 1

κ = β
1
κ
−1
(

1
1−γ − β

)
= β

1
κ
−1 κ

1−γ < 0.

By (3.8), the first-order condition for the optimal stock demand (3.7) becomes

η + σ2π
xGxx

Gx

=
1− β
β

β
1
κ

(
(1− π)γxγGx

)− 1
κ
. (3.9)

We now conjecture

G(t, x) =
1

1− γ
x1−γf(t)k (3.10)

with a constant k that will be chosen later on. The terminal condition on f is given by

f(T )k = (1− π(T ))(1−α)(1−γ). (3.11)

Then the first-order condition (3.6) for consumption becomes

c

x
= β

1
κ

(
(1− π)(1−β)(γ−1)fk

)− 1
κ

(3.12)

and the first-order condition (3.9) for stock

η − γσ2π =
1− β
β

β
1
κ

(
(1− π)γfk

)− 1
κ
. (3.13)

For the moment we make the assumption that the following conditions hold. A formal verifi-

cation proof that these assumptions are actually satisfied can be found in Section 6.

(i) The consumption-portfolio problem has a smooth value function with f ∈ C1, f > 0, and

k ∈ IR.

(ii) The FOCs (3.12) and (3.13) determine the optimal consumption and stock demand.

(iii) If the horizon is infinite, then a suitable transversality condition holds.7

Under these assumptions, the optimal stock demand characterized by (3.13) is deterministic

and independent of the agent’s wealth. Notice that (3.13) is of the form

η − γσ2π(t) = h(t) (3.14)

with a strictly positive deterministic function h(t).

The following proposition establishes global concavity of our problem:

7See, e.g., Duffie (2001).
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Proposition 3.1 (Concavity and Global Optimality). Assume that (i) holds. Then the function

H(c, π) ≡ xπηGx − cGx + 0.5x2σ2π2Gxx + u(c, x(1− π))

is strictly concave, i.e. a solution to the FOCs (3.12) and (3.13) is a global maximum.

As already announced above when we discussed the representation of the optimal stock de-

mand (3.7), we can now show that the optimal stock demand in our framework is always

smaller than the demand in an ordinary setting without preferences for cash. More precisely,

we obtain the following result.

Proposition 3.2 (Size of the Optimal Stock Demand). Under assumptions (i)-(iii) and con-

ditions (2.2)-(2.4) the agent’s stock demand is bounded from above as follows:

π∗(t) < min{m, 1}, (3.15)

where m is the stock demand in a Merton problem defined in (2.3).

Notice that the result of the previous proposition is slightly sharper. It states that the demand

must be smaller than one as well. This is a binding restriction if the stock investment is very

beneficial leading to a stock demand above one in an ordinary Merton problem. In our setting,

the agent always holds cash following from his preferences for cash and thus his demand is

always below one.

Substituting the guess (3.10) into the Bellman equation yields

0 = k
1−γft +

(
r − δ

1−γ + πη − 0.5γσ2π2
)
f +K(1− π)−

(β−1)(1−γ)
κ f 1− k

κ , (3.16)

where we evaluate the Bellman equation at the optimal stock demand π = π∗. Hence, the

separation (3.10) works, but the first-order condition (3.13) and the Bellman equation (3.16)

constitute a coupled system of equations for f and π∗. Using (3.13) the Bellman equation can

be rewritten as

0 = k
1−γft +

(
r − δ

1−γ + πη − 0.5γσ2π2 + K̃(η − γσ2π)(1− π)
)
f (3.17)

with

K̃ ≡ K
β

1− β
β−

1
κ =

κ

(1− γ)(1− β)
.

By choosing k as

k = κ = 1 + β(γ − 1),

6
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one can isolate f in (3.13):

f =

1−β
β
β

1
κ

(η − γσ2π)(1− π)
γ
κ

. (3.18)

Notice that the optimal stock demand thus directly determines the value function and vice

versa. Furthermore, we can substitute into (3.12) and rewrite the consumption-wealth ratio

c

x
=

β

1− β
(η − γσ2π)(1− π), (3.19)

which is inversely related to the stock demand.

We can now derive an explicit characterization of the optimal stock demand via an ordinary

differential equation. The key idea is to use the explicit representation (3.18) for f and then to

substitute back into the Bellman equation:

Proposition 3.3 (ODE Characterization of the Optimal Stock Demand).

dπ

dt
=
γ − 1

k

P2(π)(1− π)(m− π)

(1− π) + γ
κ
(m− π)

(3.20)

where P2(π) is a second-order polynomial in π:

P2(π) = r − δ

1− γ
+ πη − 0.5γσ2π2 + K̃γσ2(m− π)(1− π). (3.21)

The result of the previous proposition is crucial for studying the stock demand over the life-

cycle. This is because the ODE (3.20) determines the derivative of the stock demand with

respect to time t. If this derivative is negative, then the stock demand is decreasing over the

life-cycle. In Proposition 3.2, we have already established that the stock demand is both smaller

than one and the Merton result m, since our agent has preferences for cash. Consequently, the

life-cycle behavior is determined by the polynomial P2. This is formalized in the following

proposition.

Proposition 3.4 (Slope of the Optimal Stock Demand). Suppose that assumptions (i)-(iii)

hold. If conditions (2.2)-(2.4) are satisfied, then (3.15) holds and thus the denominator in

(3.20) is always positive, i.e.

(1− π) +
γ

κ
(m− π) > 0.

In particular, the sign of the polynomial P2 determines the sign of the slope of π over time, i.e.

P2(π) > 0 ⇐⇒ dπ

dt
> 0 and P2(π) < 0 ⇐⇒ dπ

dt
< 0.

7
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To be able to discuss the economic implications of this result, we must characterize the solution

of the ODE for the optimal stock demand. One of the important ingredients is its terminal

condition. Since f must satisfy the terminal condition (3.11), the terminal condition for π can

be calculated from (3.13) by solving for π(T ) in the following equation

η − γσ2π(T ) =
1− β
β

β
1
κ

(
(1− π(T ))γf(T )k

)− 1
κ

(3.22)

= C
(

1− π(T )
)−κα

κ

with κα ≡ 1 + α(γ − 1) and

C ≡ 1− β
β

β
1
κ . (3.23)

There are two special cases where the terminal condition becomes explicit. The following

proposition summarizes these cases.

Proposition 3.5 (Terminal Condition on Optimal Stock Demand). (i) If the liquidity prefer-

ences are the same for consumption and bequest, i.e. β = α, we obtain

π∗(T ) =
m+ 1

2
−

√
(m− 1)2

4
+

C

γσ2
< min{m, 1}. (3.24)

(ii) If η = γσ2, i.e. m = 1, then

π∗(T ) = 1−
(
C

γσ2

) κ
κ+κα

.

Now, we can formally solve the ODE (3.20) by applying separation of variables:

k

γ − 1

∫
(1− π) + γ

κ
(m− π)

P2(π)(1− π)(m− π)
dπ = t+ const, (3.25)

where const can be determined by using terminal condition (3.22) on π. We first study the

infinite-horizon case which is simpler since the optimal stock demand is constant. The solution

of this case allows us to solve the more involved finite-horizon problem as well.

4 Infinite Horizon

For an infinite horizon, the ODE (3.20) simplifies to an algebraic equation for the optimal stock

demand:

0 =
γ − 1

k

P2(π)(1− π)(m− π)

(1− π) + γ
κ
(m− π)

. (4.26)

8
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Notice that the optimal stock demand and in turn the function f is now simply a constant.

Under assumptions (i)-(iii) the optimal demand is a root of the polynomial. In general, there

are two possible solutions and we have to identify the correct one. Therefore, we study the

polynomial in more detail which can be rewritten as follows

P2(π) = K̂(π2 + pπ + q)

with

K̂ ≡ γσ2(K̃ − 0.5) < 0, p ≡ η − K̃(η + γσ2)

K̂
, q ≡

r − δ
1−γ + K̃η

K̂
. (4.27)

The two candidate solutions are

π01/02 = −0.5p±
√
D with D ≡ p2/4− q.

The upper bound established in Proposition 3.2 is again crucial since only one solution is below

this bound and is thus feasible. The following proposition formalizes our arguments:

Proposition 4.1 (Optimal Stock Demand for an Infinite Horizon). Under assumptions (i)-(iii)

and conditions (2.2)-(2.4) the optimal stock demand for an infinite horizon is given by

π∞ ≡ π02 = −0.5p−
√
D < min{m, 1}.

Given our previous results the polynomial of degree four in the numerator on the right-hand

side of (3.20) has four real-valued roots:

π01 > min{m, 1+m
2
}, π∞ < min{m, 1}, π03 = 1, π04 = m, (4.28)

where the last two become a double root for m = 1. It can thus be written as

P2(π)(1− π)(m− π) = K̂(π01 − π)(π∞ − π)(1− π)(m− π).

For m = 1 the representations in (4.27) become

p = −2, q = 1 +
r − δ

1−γ + 0.5γσ2

K̂
=⇒ D = (r̃ + 1)

γ − κ
γ + κ

> 0 (4.29)

with r̃ ≡ 2(r + δ
γ−1)/(γσ2) = 2(r + δ

γ−1)/η. Therefore,

π01 = 1 +
√
D, π02 = 1−

√
D.

Therefore, the representation of the optimal stock demand simplifies significantly:

9
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Corollary 4.2 (Optimal Stock Demand for an Infinite Horizon and m = 1). Under assumptions

(i)-(iii) and conditions (2.2)-(2.4) the optimal stock demand for an infinite horizon and m = 1

is given by

π∞ = π02 = 1−
√
D.

Since the optimal demand in an ordinary Merton problem is one, we now get the clean result

that the adjustment for liquidity preferences is given by
√
D. If D is larger, then the stock

demand is smaller. Notice that D increases with δ, r, or β, i.e. the stock demand is inversely

related to these parameters. This is intuitive since δ models time preferences and the higher δ

the less the agent cares about the future and thus consumes more. Since preferences for cash

link the stock demand to consumption, the agent invests less in stocks. Besides, higher interest

rates make it more attractive to hold cash and thus the stock demand decreases. Finally, the

cash demand increases in the strength of the preferences for cash captured by β and thus the

stock demand is smaller for higher values of β. The effect of γ is ambiguous for time-additive

utility since γ has a dual role and captures the agent’s risk aversion, but also his elasticity

of intertemporal substitution (EIS). We are able to study this issue in more detail in a latter

section where we consider an agent with recursive utility. This allows us to disentangle risk

aversion from EIS.

5 Finite Horizon

We first study the finite-horizon case for m 6= 1. The case m = 1 is analyzed below. Fur-

thermore, notice that if π∗(T ) = π∞, then the optimal stock demand is constant and equal to

π∗(t) = π∞. This follows directly from (3.20). We thus impose

π∗(T ) 6= π∞ (5.30)

Throughout this section, we also assume that assumptions (i)-(iii) and conditions (2.2)-(2.4)

are satisfied.

5.1 The Case m 6= 1m 6= 1m 6= 1

Given our previous results we can rewrite (3.25):

G(π) ≡
∫

(1− π) + γ
κ
(m− π)

(π01 − π)(π∞ − π)(1− π)(m− π)
dπ = −Kt+ const (5.31)

10
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with K ≡ −K̂ γ−1
k

> 0. From a stochastic-control point of view, the function G is important

in the sequel because the optimal stock demand is essentially the inverse of G, which will be

established below (see Proposition 5.2). Since the value function is determined by π via (3.18),

it is crucial that G is well-defined, sufficiently smooth, and invertible. This is established in the

following proposition.

Proposition 5.1 (G Well-Defined and Invertible). (i) The mapping G is a well-defined real-

valued function on (−∞,min{m, 1})\{π∞} with the representation

G(π) ≡ −α1 ln(π01 − π)− α2 ln |π∞ − π| − α3 ln(1− π) + α4 ln(m− π), (5.32)

where

α1 ≡
1 + γ

k
m− π01(1 + γ

k
)

(π01 − π∞)(1− π01)(π01 −m)
, α2 ≡

1 + γ
k
m− π∞(1 + γ

k
)

(π01 − π∞)(1− π∞)(m− π∞)
,

α3 ≡
γ
k

(1− π01)(1− π∞)
, α4 ≡

1

(π01 −m)(m− π∞)
.

(ii) For all m > 0, we have α2 > 0. If m ∈ (0, 1], then α4 > 0. If m > 1, then α3 < 0.

(iii) G(π)→∞ if π ↘ π∞ or π ↗ π∞.

(iv) If m ∈ (0, 1], then G(π)→ −∞ for π ↗ m. If m > 1, then G(π)→ −∞ for π ↗ 1.

(v) G ′(π) > 0 for π < π∞ and G ′(π) < 0 for π ∈ (π∞,m]. In particular, G has a well-defined

inverse G−1 for π < π∞ and for π ∈ (π∞,m].

The constant in (5.31) is given by π∗(T ), which can be determined by (3.22). Therefore, we

obtain

const = G(π∗(T )) +KT =⇒ G(π∗(t)) = K(T − t) + G(π∗(T )),

where G(π∗(T )) can be calculated by substituting π∗(T ) into (5.32). The optimal demand π∗

must be smooth since it is directly related to f , which must be a C1-function. Therefore, the

properties of G imply the following result:

Proposition 5.2 (Size and Slope of the Optimal Stock Demand). (i) If π∗(T ) < π∞, then

π∗(t) < π∞ and dπ∗(t)/dt < 0. (ii) If π∗(T ) ∈ (π∞,min{m, 1}), then π∗(t) ∈ (π∞,min{m, 1})
and dπ∗(t)/dt > 0. In any case, if (5.30) holds, then the optimal stock demand is given by

π∗(t) = G−1(K(T − t) + G(π∗(T ))). (5.33)

In particular, π∗ is a smooth C1-function, which by (3.18) is also true for f .
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Remark. Figure 1 that is discussed in Section 8 shows an example of the function G for the

benchmark calibration reported in Table 2.

The relation between the terminal condition π∗(T ) and the optimal demand π∞ in an infinite

horizon setting is crucial for the question of whether the stock demand is increasing or decreasing

over the life-cycle. Formally, the reason is that the form of the ODE (3.20) induces a monotonic

behavior of the demand, since the slope is either decreasing or increasing, but cannot change

its sign.

In all our numerical examples presented in Section 8, the first case with π∗(T ) < π∞ obtains,

whereas the second case can only occur if the parameters take extreme and unrealistic values

(e.g. for an unrealistically high time-preference rate δ). From an economic point of view,

the first case generates an interesting stock demand that is falling over the life-cycle. So

adding preferences for liquidity to a standard Merton framework can generate a decreasing

stock demand.

To understand the economic intuition behind the condition π∗(T ) < π∞, we consider the case

m = 1 where, as we will see in the following section, the same condition applies. For simplicity,

we also assume α = β, but choosing α = 1 does not change the interpretation given below. By

Propositions 3.5 and 4.2, the condition is then equivalent to

C

γσ2
> D ⇐⇒ β

1
κ
−1 >

(
2(r + δ

γ−1) + η
) γ − 1

γ + κ︸ ︷︷ ︸
<1

where we use (3.23), (4.29), and η = γσ2 since m = 1. For a given excess return η, the last

inequality imposes a condition on β, r, and δ. If the agent has moderate preferences for cash,8

i.e. β ∈ (0.95, 1), then the left-hand side is close to one. Therefore, the inequality can only

be violated if the interest rate or the time-preference rate is extremely high. High values of r

incentivize the agent to invest a lot in the money market account already early in life. High

values of δ amplify the consumption motive. Both effects crowd out the stock demand early

in life and reverse its downward sloping pattern. In the general setting where m 6= 1, these

findings are still valid as long as β remains moderate and the other parameters do not take

unrealistically high or low values.

8In our numerical examples, we use values of β in this range leading to stock demands in a realistic range.
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5.2 The Case m = 1m = 1m = 1

For the case m = 1 we have η = γσ2 and thus equation (5.31) simplifies into

−2(1− β)

γσ2

∫
1

(π01 − π)(π∞ − π)(1− π)
dπ = t+ const (5.34)

because −(1 + γ
κ
)/K = −2(1− β)/(γσ2). Since∫

1

(π01 − π)(π∞ − π)(1− π)
dπ =

2 ln(1− π)− ln |π∞ − π| − ln(π01 − π)

2D

we can rewrite (5.34) as follows

H
(
π∗(t)

)
= H

(
π∗(T )

)
e
Dγσ2

1−β (T−t), (5.35)

where9

H(π) ≡ (1− π)2

|π∞ − π|(π01 − π)
=

(1− π)2

|1−
√
D − π|(1 +

√
D − π)

, π ∈ (−∞, π∞) ∪ (π∞, 1),

and D is given in (4.29). The constant H
(
π∗(T )

)
reads

H
(
π∗(T )

)
=

(
C
γσ2

) 2κ
κ+κα∣∣∣∣D − ( C

γσ2

) 2κ
κ+κα

∣∣∣∣ , (5.36)

where C is given by (3.23). In the special case α = β, this simplifies further

H
(
π∗(T )

)
=

C

|Dγσ2 − C|
.

Again it is not a priori clear whether π∗(T ) > π∞ or π∗(T ) < π∞. As we show in the Appendix,

the function H is invertible. Consequently, we get a fully explicit representation of the optimal

stock demand:

Proposition 5.3 (Optimal Stock Demand for m = 1). (i) If π∗(T ) ∈ (−∞, π∞), the optimal

stock demand is explicitly given by

π∗(t) = 1−

√√√√ D

1− e−
Dγσ2

1−β (T−t)/H
(
π∗(T )

) .
9The case π = π∞ is not relevant due to assumption (5.30).
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(ii) If π∗(T ) ∈ (π∞, 1), the optimal stock demand is explicitly given by

π∗(t) = 1−

√√√√ D

1 + e−
Dγσ2

1−β (T−t)/H
(
π∗(T )

) .
In both cases, the constant H(π∗(T )) is given by (5.36).

Remarks. a) If the horizon goes to infinity, i.e. T →∞, we recover the result of Corollary 4.2.

b) By construction of the inverse, the right-hand side in both cases becomes π∗(T ) if t = T .

c) By differentiating π∗(t) w.r.t. time t, one can check that for (i) the stock demand is increasing

over time, whereas it is decreasing for (ii), which is in line with our previous results.

6 Verification

We now prove that the assumptions (i)-(iii) imposed in Section 3 are satisfied for our problem,

i.e. the candidate G is indeed the value function and (π∗, c∗) is the optimal strategy. Notice

that we will sometimes use the notation Xπ,c to emphasize that the wealth dynamics depend

on the controls π and c. First, we need to define the set of admissible strategies.

Definition 6.1 (Admissible Strategy). A strategy (π, c) is said to be admissible if the following

conditions are satisfied:

(i) The processes π and c are progressively measurable w.r.t. the filtration generated by the

Brownian motion W ,

(ii) for all initial conditions (t0, x0) ∈ [0, T ]×(0,∞) the wealth equation (2.1) with Xπ,c(t0) = x0

has a pathwise unique solution {Xπ,c
t }t∈[t0,T ],

(iii) Xπ,c ≥ 0,

(iv) c ≥ 0 and π ≤ 1

(v) c ≤ cXπ,c and π ≥ π for constants c and π that can be different for different strategies.

We denote the set of admissible strategies by A.

Remarks. a) Notice that (i)-(iii) are for instance satisfied if c and π are smooth deterministic

functions.

b) If the conditions in (iv) do not hold, then the utility functional is not well-defined.

c) The conditions in (v) are imposed to simplify matters. They could be relaxed by imposing

suitable integrability conditions on c and π. From an economic point of view, it seems however
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reasonable that the stock demand is bounded from below and that the consumption-wealth

ratio is bounded from above.

First, we summarize our previous results concerning the candidates for the value function and

the optimal controls.

Theorem 6.2 (Candidates for Value Function and Controls). Assume that conditions (2.2)-

(2.4) hold. Then we obtain the following: (i) The candidate (5.33) for the optimal stock demand

π∗ is a well-defined real-valued C1-function defined on [0, T ] and mapping into (−∞, π∞) if

π∗(T ) < π∞ and mapping into (π∞,m) if π∗(T ) > π∞.

(ii) The candidates f and c∗ are well-defined real-valued C1-functions given by (3.18) and

(3.19).

(iii) The pair (π∗, c∗) is admissible in the sense of Definition 6.1.

Now, we can verify that the candidates for the optimal stock demand and consumption are

indeed optimal.

Theorem 6.3 (Verification for a Finite Horizon). The function G given by (3.10) is the value

function of the problem and π∗ and c∗ are the optimal stock demand and consumption.

If the horizon is infinite, then the value function and the optimal strategy become time-

independent. In particular, G satisfies the Bellman equation (3.5) where the time derivative Gt

is set to zero. The candidate for the optimal stock demand is the constant π∞ and satisfies the

algebraic equation (4.26) that we have analyzed in detail in Section 4. In turn, the candidates

for f and c/x that are still given by (3.18) and (3.19) are also constant. To ensure that our

verification result provided in Theorem 6.3 carries over to the infinite-horizon case, we have

to prove a so-called transversality result.10 If this is satisfied, then loosely speaking beqeust

becomes negligible if the horizon gets larger. Formally, we obtain the following result:

Theorem 6.4 (Verification for an Infinite Horizon). Assume that the candidate for the optimal

stock demand satisfies π∞ > 0. Then π∞ is the optimal stock demand and the value function

is given by

G(x) =
1

1− γ
x1−γfk

where f is a constant that is determined by π∞ via (3.18). The optimal consumption-wealth

ratio c∞/x is also constant and given by

c∞

x
=

β

1− β
(η − γσ2π∞)(1− π∞). (6.37)

10See, e.g., Duffie (2001), p. 213.
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Remark. The condition π∞ > 0 excludes pathological cases where the candidate for the

optimal stock demand is negative. This can only occur if β becomes very small.

7 Recursive Utility

We now consider an agent with recursive preferences that are referred to as stochastic differential

utility (SDU) in continuous time. Duffie and Epstein (1992) and Kraft and Seifried (2014) show

that the aggregator inducing a continuous-time version of Epstein-Zin preferences reads

F(C, v) = δv
(
C1−φ((1− γ)v)−

1
θ − θ

)
, (7.38)

where θ = 1−γ
1−φ and δ, γ, φ > 0. The aggregator involves three parameters, the time-preference

rate δ, the risk aversion γ, and the elasticity of intertemporal substitution (EIS) given by 1/φ.

Therefore, Epstein-Zin preferences allow us to disentangle risk aversion from EIS. Notice that

for time-additive utility this is not possible since φ = γ. Nevertheless, (7.38) thus contains

the preferences introduced in Section 2 as a special case. The utility of a given consumption-

portfolio strategy (c, π) is recursively defined by

Gc,π(t, x) ≡ Vc,πt = Et

[ ∫ T

t

F(Cc,πs ,Vc,πs ) ds
]
,

where Cc,πt ≡ cβt
(
Xt(1 − πt)

)1−β
. In the following, we drop the indices c, π for notational

convenience. Duffie and Epstein (1992) show that the analogue of the Bellman equation (3.5)

is given by

0 = sup
π,c

{
Gt + xrGx + xπηGx + 0.5x2σ2π2Gxx − cGx + F(C, G)

}
(7.39)

with terminal condition G(T, x) = U(x, x(1 − π(T ))). Notice that the aggregator of time-

additive utility is given by

u(C)− δv,

i.e. the time-additive aggregator is replaced by the Epstein-Zin aggregator. The first-order

condition for consumption becomes

c = β
1
κφ (x(1− π))

(β−1)(φ−1)
κφ G

− 1
κφ

x ((1− γ)G)
θ−1
θκφ , (7.40)

where κφ ≡ 1 + β(φ − 1) > 0. The first-order condition for stock is the same as before, i.e.

it is identical to (3.7). Notice that, although we get the sane first-order condition for stock,

16



 Electronic copy available at: https://ssrn.com/abstract=3034165 

this does not mean that the stock demand has to be the same, since the function G is different

from the one in the previous sections. Nevertheless, this result already indicates that the stock

demand might not fundamentally change for recursive utility. We will analyze this issue in

Section 8 in more detail. Using (7.40) the first-order condition for stock can be rewritten as

η + σ2π
xGxx

Gx

=
1− β
β

β
1
κφ

(
(1− π)φxφGx((1− γ)G)

1−θ
θ

)− 1
κφ .

As before we use the conjecture (3.10) with terminal condition (3.11). Then the first-order

condition for consumption becomes

c

x
= β

1
κφ

(
(1− π)(1−β)(φ−1)f

k
θ

)− 1
κφ (7.41)

and the first-order condition for stock

η − γσ2π =
1− β
β

β
1
κφ

(
(1− π)φf

k
θ

)− 1
κφ . (7.42)

These first-order conditions are similar to the ones for time-additive utility, but γ is replaced

by φ whenever it plays the role of 1/EIS. This is only not happening if γ is really capturing

risk aversion (e.g. in front of the variance σ2). In Appendix E we show that the ODE for the

optimal stock demand now becomes:

Proposition 7.1 (ODE Characterization of Optimal Stock Demand for SDU). The optimal

stock demand satisfies
dπ

dt
=
φ− 1

κφ

P2(π)(1− π)(m− π)

(1− π) + φ
κφ

(m− π)
, (7.43)

where the second-order polynomial P2 is

P2(π) = r − δ

1− φ
+ πη − 0.5γσ2π2 + K̃φγσ

2(m− π)(1− π).

with K̃φ ≡ κφ
(1−φ)(1−β) . The terminal condition is given by (E.57).

Remark. One can check that all arguments in Sections 4 and 5 go through one by one for

φ > 1 where at obvious places γ must be replaced by φ. For φ < 1 some arguments have to be

modified. Furthermore, verification theorems can be proved extending the ideas in Duffie and

Epstein (1992) or Kraft, Seiferling, and Seifried (2017) to a setting with preferences for cash.

This is beyond the scope of this paper.
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8 Numerical Examples

To illustrate the effect of preferences for cash, we now consider the stock demand for a base-

line calibration and also perform some comparative statics. Our calibration is summarized in

Table 2. The values of the real interest rate r, the equity premium η, and the stock volatility

σ are in line with US data starting in 1960. As stock market data, we use returns on the

CRSP value-weighted market portfolio inclusive of the NYSE, AMEX, and NASDAQ markets

(cum dividend). The risk-free asset is estimated from the Treasury bill yield provided by the

Risk Free File on CRSP Bond tape. To obtain real values, all time-series are deflated using

the consumer price index (CPI) taken from the website of the Bureau of Labor Statistics. We

slightly reduce the equity premium to 5% to account for survivorship bias (Brown, Goetzmann,

and Ross (1995)) as well as the decline in discount rates and the implied unexpected capital

gains over the sample period (Fama and French (2002)). An estimate of 5% is also in line with

recent empirical evidence by Avdis and Wachter (2017) suggesting that the sample average

excess return is overstating the equity premium. The choices of the risk aversion γ = 3 and

time-preference rate δ = 0.03 are in line with the literature on life-cycle portfolio choice (see,

e.g., Munk (2013) and the references therein), but we also vary the risk aversion γ and the

consumption weight β. We assume that α = 1, i.e. bequest does not involve preferences for

cash. However, choosing for instance α = β = 0.99 hardly changes our results. The time

horizon is 50 years (e.g. age 25 until age 75).

We first illustrate how the function G given by (5.32) looks like. Recall that it plays an important

role for the optimal stock demand. Figure 1 depicts G for our benchmark calibration. As we

have seen in Section 5, the shape of of G is crucial for the size and slope of the optimal stock

demand over time. In particular, the location of the pole of G, which is the solution π∞ to

the infinite-horizon case, relative to the terminal condition π∗(T ) determines whether the stock

demand is increasing or decreasing. As explained at the end of Section 5.1, this is determined

by the values of δ, r, and β. More precisely, the stock demand is decreasing over the life-cycle

if all parameters have moderate values of realistic size. As we are going to see now, this also

leads to stock demands in realistic ranges.

In our benchmark case, we get π∗(T ) = 0.3867, which is smaller than the optimal demand π∞

of the infinite-horizon problem. Therefore, by Proposition 5.2, the left branch of the function

G must be inverted to obtain the optimal stock demand, which is then decreasing over time. If

π∗(T ) were larger than π∞, then the right branch of G would be relevant and the stock demand

would be increasing. Notice that G is increasing before the pole π∞ and decreasing afterwards.
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This is the reason why the optimal stock demand is decreasing or increasing depending on

whether π∞ > π∗(T ) or π∞ < π∗(T ).

For our benchmark calibration, Figure 2 depicts the optimal demand m of an ordinary Merton

problem and the optimal demands π∞ and π∗(t) of the infinite-horizon as well as the finite-

horizon problem. As expected for the finite-horizon problem, we obtain a stock demand that is

decreasing over time. Since the initial time horizon is large, it starts close to the solution of the

infinite-horizon case, which is about 0.57, and decreases at an increasing rate to the terminal

condition π∗(T ) = 0.3867, i.e. the optimal stock demand is about 20% lower at the investment

horizon. From an economic point of view, the time dependence comes from the fact that the

relative price of liquidity, which is implicitly determined at the optimum, changes over time.

Figure 3 depicts the corresponding results if the stock demand in the Merton problem is 100%.

This is achieved by increasing the equity premium to 0.0867, which is of course on high side.

The case m = 1 is particularly interesting since any derivation from 100% can be interpreted

as resulting from the preferences for cash. The effect is about 7% for the infinite-horizon case,

but is much more pronounced for the finite-horizon case. In fact, the optimal stock demand

decreases from about 92% to 65% over time leading to a liquidity effect between 7% and 35%.

Figure 4 depicts a calibration where the Merton demand is 110%. It can be seen that already

in the infinite-horizon case preferences for cash bring down the optimal demand to less than

100%. This is in line with Proposition 4.1. Otherwise, the demand would not be admissible.

For the finite-horizon problem, the optimal stock demand decreases from 95% to 70%.

Figure 5 shows comparative statics if we increase the weight of the cash preferences by decreas-

ing the weight of consumption. Of course, the general effect is negative, i.e. more weight on

cash preferences leads to less stock demand. However, it can be seen that the effect is initially

pretty small, but at the end the terminal conditions are more sensitive. In particular, the opti-

mal stock demands at the investment horizon vary between 38.7% and 6.8%. Finally, Figure 6

depicts comparative statics if we vary the risk aversion coefficient. Now, all stock demands

decrease in risk aversion, which is reasonable.

Figures 7 and 8 assume that the agent has recursive utility as introduced in Section 7. Therefore,

we can vary the elasticity of intertemporal substitution (EIS) independently of the risk aversion.

Figure 7 shows that the stock demands are almost identical for different values of φ, i.e. the effect

of the EIS on our results is negligible. This result is not unreasonable: Without preferences for

cash the stock demand does not depend on the EIS at all. In our setting the stock demand is

directly related to consumption because it enters the utility function of the agent. Therefore,

there could potentially be an effect. However, it can be shown that in a Merton setting the
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consumption-wealth ratio for an agent with recursive utility, but without preferences for cash

does not change significantly if the EIS is varied. Consequently, the effect on the stock demand

is supposed to be moderate as well, which we indeed document in Figure 7. On the other hand,

Figure 8 confirms that varying the risk aversion, but keeping the EIS fixed has a significant

effect. In fact, the results of Figures 6 and 8 are almost identical since the EIS plays a negligible

role. To summarize, these findings indicate that our previous results are robust to introducing

recursive utility.

9 Conclusion

This paper studies a canonical consumption-portfolio problem with “money in the utility func-

tion”. We provide the solution to the finite-horizon setting and analyze the relation to the

problem with an infinite horizon. We show that for a finite horizon the stock demand can

be increasing or decreasing over the life cycle where the latter result typically arises for real-

istic calibrations. Therefore, adding preferences for cash to an ordinary Merton problem can

generate life-cycle stock demands that are in line with rules of thumb for stock investing and

recent empirical evidence. This could potentially be a very useful result for modeling life-cycle

consumption-portfolio decisions. We also consider an agent with recursive utility and prefer-

ences for cash. In this setting, we show that our findings are robust to varying the elasticity of

intertemporal substitution.
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A Proofs of Section 3

Proof of Proposition 3.1. The sufficient conditions for a maximum are

Hcc < 0, Hππ < 0, det

[
Hcc Hcπ

Hπc Hππ

]
> 0

with

Hcc = ucc = β(β(1− γ)− 1)cβ(1−γ)−2(x(1− π))(1−β)(1−γ) < 0,

Hππ = −γx1−γσ2fk + (1− β)[(1− β)(1− γ)− 1]cβ(1−γ)(x(1− π))(1−β)(1−γ)−2x2 < 0,

Hcπ = Hπc = β(1− β)(1− γ)cβ(1−γ)−1(x(1− π))(1−β)(1−γ)−1(−x).

Hence,

det

[
Hcc Hcπ

Hπc Hππ

]
= −γx1−γσ2fkβ[β(1− γ)− 1]cβ(1−γ)−2(x(1− π))(1−β)(1−γ)x2

+β(1− β)[(1− β)(1− γ)− 1][β(1− γ)− 1]c2β(1−γ)−2(x(1− π))2(1−β)(1−γ)−2x2 > 0.

2

Proof of Proposition 3.2. For m ≤ 1 we obtain π∗(t) < m since (3.14) holds. For m > 1

the FOC (3.13) dictates π∗(t) < 1. 2

Proof of Proposition 3.3. Taking derivatives in (3.18) w.r.t. time t and substituting back

into the Bellman equation leads to an differential equation for π: First, we differentiate (3.18)

w.r.t. time t and get

df

dt
= f

dπ

dt

{γ
κ

(1− π)−1 + γσ2(η − γσ2π)−1
}
,
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where we express the derivative in terms of f and the derivative of π. Substituting f and ft

into (3.17) and using the definition (2.3) yields the ODE (3.20) for π. 2

Proof of Proposition 3.5. (i) In this case κα = κ and thus equation (3.22) becomes

quadratic:

π(T )2 + aπ(T ) + b = 0 with a ≡ −(m+ 1), b ≡ m− 1−β
β
β

1
κ

1
γσ2 .

This equation has two real solutions, but one root is bigger than 0.5(m + 1) and thus violates

Proposition 3.2. Now, C > 0 and thus

π∗(T ) =
m+ 1

2
−

√
(m− 1)2

4
+

C

γσ2
<
m+ 1

2
− |m− 1|

2
= min{m, 1}

Therefore, (3.24) is the correct solution and (i) follows.

(ii) follows since η − γσ2π(T ) = γσ2(1− π(T )). 2

B Proof of Proposition 4.1

First, we need to establish some technical estimates that are summarized in the following

lemma. To simplify notation, we set

χ ≡ −K̃ =
κ

(γ − 1)(1− β)
> 0.

Lemma B.1 (Solutions of Polynomial). We get the following representations:

−0.5p =
m+ (1 +m)χ

1 + 2χ
,

D =
m2

1 + 2χ
+

(
χ(1−m)

1 + 2χ

)2

+

m
η

(r − δ
1−γ )

0.5(1 + 2χ)
, (B.44)

−0.5p−m =
χ(1−m)

1 + 2χ
. (B.45)

Now assume that conditions (2.2)-(2.4) are satisfied. Then

−0.5p ∈
[

min{m, 1+m
2
},max{m, 1+m

2
}
]

and D > 0.

Furthermore, if m ≤ 1 we get for the distance between −0.5p and m

−0.5p−m ∈ [0,
√
D). (B.46)

If m > 1 we obtain

−0.5p−
√
D < 1. (B.47)
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Proof of Lemma B.1. The representations follow from lengthy calculations. Furthermore,

the function ψ(χ) = m+(1+m)χ
1+2χ

is monotonic increasing for m ≤ 1 (decreasing for m > 1),

starting at m for χ = 0, and having the limit 0.5(1 + m) for χ → ∞. Besides, D > 0

since χ > 0, and r ≥ −δ/(γ − 1). For m ≤ 1 we get −0.5p −m ≥ 0 since (B.45) and χ > 0.

Furthermore, −0.5p−m <
√
D since the middle term in the representation of D is (−0.5p−m)2

and the first term is strictly positive. To show (B.47) for m > 1, notice that

(−0.5p− 1)2 =
(m− 1)2(1 + χ)2

(1 + 2χ)2
.

On the other hand,

D >
m2

1 + 2χ
+

(
χ(1−m)

1 + 2χ

)2

=
m2(1 + 2χ) + χ2(1−m)2

(1 + 2χ)2
.

Now, the result follows since

(m− 1)2(1 + χ)2 = (m− 1)2(1 + 2χ) + χ2(m− 1)2 < m2(1 + 2χ) + χ2(1−m)2.

2

Remark. Notice that −0.5p − m <
√
D if m ∈ (0, 1], but −0.5p − m =

√
D if m = 0.

As already pointed out, the latter case is not interesting since then the agent puts all his

wealth into the money market account in the standard portfolio problem anyway. Therefore,

liquidity preferences are irrelevant for the portfolio decision. This trivial case is ruled out by

assumption (2.3).

Now, we can provide the proof of Proposition 4.1. For the first root, we get π01 = −0.5p+√
D > min{m, 1+m

2
}, which violates the result of Proposition 3.2. Since (B.46) or (B.47),

respectively, π02 is the only relevant solution to the first-order condition.

C Proofs of Section 5

Proof of Proposition 5.1. (i) follows from integrating the partial fraction expansion. (ii)

follows from (4.28). (iii) and (iv) follow from the representation of G and (ii). Notice that for

m ∈ (0, 1) the terms involving α1 and α3 are bounded, whereas for m > 1 the terms involving

α1 and α4 are bounded. Finally, by construction, we have

G ′(π) =
(1− π) + γ

κ
(m− π)

(π01 − π)(π∞ − π)(1− π)(m− π)
.

The sign of G ′ is determined by the term (π∞ − π) since all other terms are positive and thus

(v) follows. 2
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Proof of Proposition 5.2. Notice that

dπ∗(t)

dt
=
dG−1

dt
(. . . ) · (−K).

Since K > 0, the result follows by Proposition 5.1 (iv). Besides, π∗ is well-defined because of

Proposition 5.1 (v). 2

Lemma C.1 (Inverse of H). (i) If π ∈ (−∞, π∞), the inverse of H is given by

H−1(y) = 1−

√
Dy

y − 1
, y > 1. (C.48)

(ii) If π ∈ (π∞, 1), the inverse of H is given by

H−1(y) = 1−

√
Dy

y + 1
.

Proof of Lemma C.1. (i) In this case, we must invert the function

H(π) =
(1− π)2

(1−
√
D − π)(1 +

√
D − π)

.

This yields two candidates

H−1(y) = 1±

√
Dy

y − 1
, y > 1.

We must have H−1(y) ≤ 1, since π∗ ≤ 1. Therefore, (C.48) follows. Notice that y > 1 is not

a restriction since the right-hand side of (5.35) is strictly greater than one. This is because H
as a function of

√
D is one for

√
D = 0, which is excluded by our assumptions, and strictly

increasing in
√
D for

√
D > 0. The case (ii) follows analogously to (i). 2

Proof of Proposition 5.3. follows from (5.35) and Lemma C.1. 2

D Proofs of Verification Results

Proof of Theorem 6.2. (i) follows from Proposition 5.2. (ii) follows from (3.18) and (3.19)

since for our candidate π∗ we have π∗ < min{m, 1}. In particular, there exist a constant c such

that c∗ ≤ cXπ∗,c∗ . Since π∗ is a smooth deterministic function on [0, T ], one can check that the

pair (π∗, c∗) is admissible. 2

25



 Electronic copy available at: https://ssrn.com/abstract=3034165 

Proof of Theorem 6.3. It is sufficient to show that for all admissible controls (π, c)∫ T

0

e−δsE[u(cs, X
π,c
s (1− πs))] ds+ e−δTE[U(Xπ,c

T , Xπ,c
T (1− πT ))] ≤ G(0, X0)

and for our candidate (c∗, π∗)∫ T

0

e−δsE[u(c∗s, X
∗
s (1− π∗s))] ds+ e−δTE[U(X∗T , X

∗
T (1− π∗T )] = G(0, X0)

where X∗ ≡ Xπ∗,c∗ .

First, notice that, by Proposition 3.1, our candidates π∗ and c∗ are the global maximizers of

the Bellman equation (3.5) for the relevant region (π, c) ∈ (−∞, 1) × (0,∞). Therefore, our

candidates satisfy the Bellman equation (without supremum) as equality, whereas all other

admissible controls satisfy the equation as inequality.

Second, we like to stress that a function G satisfies the Bellman equation (3.5) if V (t, x) ≡
G(t, x)e−δt satisfies

0 = sup
π,c

{
Vt + xrVx + xπηVx − cVx + 0.5x2σ2π2Vxx + e−δtu(c, x(1− π))

}
(D.49)

with terminal condition V (T, x) = e−δTG(T, x). Notice that the maximizers of the Bellman

equation are not affected by this transformation.

For an admissible control, we now apply Ito’s formula to V (t,Xt)

dV = [Vt + VxX(r + πη − c/X) + 0.5VxxX
2σ2π2]dt+ VxXσπdW

(D.49)
= −e−δtu(c,X(1− π))dt+ VxXσπdW

where we omit all arguments. Evaluating at t = T yields

V (T,XT ) +

∫ T

0

e−δtu(ct, Xt(1− πt))dt ≤ V (0, X0) +

∫ T

0

Vx(t,Xt)XtσπtdWt, (D.50)

where we have equality for (π∗, c∗). The integrand of the stochastic integral

Vx(t,Xt)Xtσπt = X1−γ
t fk(t)e−δtσπt

is an L2-process since f is smooth and, by (iv) and (v) of an admissible strategy, π and the

coefficients of X are bounded. Therefore, using the terminal condition and taking expectations

yields

E
[ ∫ T

0

e−δtu(ct, Xt(1− πt))dt+ e−δTU(XT , XT (1− πT ))
]
≤ V (0, X0)

with equality for (π∗, c∗), which gives the desired result. 2

26



 Electronic copy available at: https://ssrn.com/abstract=3034165 

Proof of Theorem 6.4. We must show that∫ ∞
0

e−δtE[u(ct, X
π,c
t (1− πt))] dt ≤ G(X0) (D.51)

for all admissible strategies and∫ ∞
0

e−δtE[u(c∞, X∗t (1− π∞))] dt = G(X0) (D.52)

for the optimal strategy where X∗ ≡ Xπ∞,c∞ . As in the proof for the finite horizon, relation

(D.50) still holds with V (t, x) = G(x)e−δt. The integrand of the Ito integral is still an L2-

process, i.e.

E[V (T,Xπ,c
T )] + E

[ ∫ T

0

e−δtu(ct, X
π,c
t (1− πt))dt

]
≤ V (0, X0)

or in terms of G

e−δTE[G(Xπ,c
T )] + E

[ ∫ T

0

e−δtu(ct, X
π,c
t (1− πt))dt

]
≤ G(X0). (D.53)

Since the previous inequality holds for all admissible strategies (π, c), we obtain

sup
π,c

(
e−δTE[G(Xπ,c

T )]
)

+ E
[ ∫ T

0

e−δtu(ct, X
π,c
t (1− πt))dt

]
≤ G(X0).

If we multiply the term involving the integral by -1, the term becomes positive and we can

apply the monotonous convergence theorem. Therefore,

lim
T→∞

E
[ ∫ T

0

e−δtu(ct, Xt(1− πt))dt
]

= E
[ ∫ ∞

0

e−δtu(ct, Xt(1− πt))dt
]
.

Hence, (D.51) follows if we can show that for every admissible strategy (π, c)

lim
T→∞

(
e−δT sup

π,c
E[G(XT )]

)
= 0

holds. Set θ ≡ η/σ. Then

0 ≥ sup
π,c

(
e−δTE[G(Xπ,c

T )]
)

= sup
π,c

(
E
[

1
1−γ (Xπ,c

T )1−γfk
])
e−δT

≥ sup
π

(
E
[

1
1−γ (Xπ,0

T )1−γ
])

︸ ︷︷ ︸
(∗)

e−δTfk = 1
1−γ (X0)

1−γe(1−γ)(r+
θ2

2γ
)T︸ ︷︷ ︸

(∗∗)

e−δTfk −→ 0 for T →∞,

since (2.4) holds and γ > 1. Notice that (∗) is the value function of an ordinary Merton problem

with terminal wealth maximization only. One can check that it has the representation (∗∗).
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Finally, we have to prove (D.52). Since (D.53) is satisfied as equality for the optimal strategy,

it is sufficient to prove the transversality condition

lim
T→∞

(
e−δTE[G(X∗T )]

)
= 0,

where

dX∗ = X∗[(r + ηπ∞ − ω∞)dt+ σπ∞dW ]

and ω∞ ≡ c∞/X∗ is the consumption-wealth ratio which is given by (6.37). Therefore,

e−δTE[G(X∗T )] = E
[

1
1−γ (X∗T )1−γfk

]
e−δT = 1

1−γX
1−γ
0 eϕTfk

where ϕ ≡ (1− γ)(r + ηπ∞ − ω∞ − 0.5γσ2(π∞)2)− δ is a constant. It remains to show that

ϕ < 0. (D.54)

By (3.21), the optimal stock demand π∞ satisfies the equation

P2(π)

K̃
= − 1− β

1
γ−1 + β

(
r − δ

1− γ
+ (η − 0.5γσ2π)π

)
+ (η − γσ2π)(1− π) = 0

Therefore,

ϕ = (1− γ)

(
r − δ

1− γ
+ ηπ∞ − 0.5γσ2(π∞)2 − β

1− β
(η − γσ2π∞)(1− π∞)

)
=

(γ − 1)β

1− β

(
− 1− β

β

[
r − δ

1− γ
+ (η − 0.5γσ2π∞)π∞

]
︸ ︷︷ ︸

(×)

+(η − γσ2π∞)(1− π∞)

)

<
(γ − 1)β

1− β
P2(π

∞)

K̃
= 0,

which shows (D.54). Notice that (×) is strictly positive since we assume (2.4) and π∞ > 0. 2

E Recursive Utility

Using (7.40) we again eliminate consumption from the Bellman equation (7.39):

0 = sup
π

{
Gt+xrGx+xπηGx+0.5x2σ2π2Gxx−θδG+Kφ(x(1−π))

(β−1)(φ−1)
κφ G

β(φ−1)
κφ

x ((1−γ)G)
θ−1
θκφ

}
with

Kφ ≡
1

1− φ
β
β(1−φ)
κφ − β

1
κφ .
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Substituting the guess (3.10) into the Bellman equation yields

0 = k
1−γft +

(
r − δ

1−φ + πη − 0.5γσ2π2
)
f +Kφ(1− π)

(β−1)(φ−1)
κφ f

1− k
θκφ ,

where we assume that the Bellman equation (E.55) is evaluated at the optimal stock demand

π = π∗. Using (7.42), we obtain

0 = k
1−γft +

(
r − δ

1−φ + πη − 0.5γσ2π2 + K̃φ(η − γσ2π)(1− π)
)
f (E.55)

with

K̃φ ≡ Kφ
β

1− β
β
− 1
κφ =

κφ
(1− φ)(1− β)

.

By choosing

k = θκφ = θ(1 + β(φ− 1)),

one can isolate f in (7.42):

f =

1−β
β
β

1
κφ

(η − γσ2π)(1− π)
φ
κφ

(E.56)

As before the optimal stock demand determines the value function. Furthermore, by substitut-

ing (E.56) into (7.41), the consumption-wealth ratio is again given by (3.19). Taking derivatives

in (E.56) w.r.t. time t yields

df

dt
= f

dπ

dt

{
φ

κφ
(1− π)−1 + γσ2(η − γσ2π)−1

}
,

where we express the derivative in terms of f and the derivative of π. Substituting back into

the Bellman equation leads to the differential equation (7.43) for π. Since f must satisfy the

terminal condition (3.11), the terminal condition for π can be calculated from (7.42) by solving

for π(T ) in the following equation

η − γσ2π(T ) = Cφ

(
1− π(T )

)−κφ,α
κφ (E.57)

with κφ,α ≡ 1 + α(φ− 1) and

Cφ ≡
1− β
β

β
1
κφ .

As before there this condition can be solved explicitly for α = β and m = 1.
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Table 1: Constants. This table summarizes relevant constants that are defined in the paper.

Name Definition On Page

m ≡ η
γσ2 3

κ ≡ 1 + β(γ − 1) 4

K ≡ β
1
κ
−1 κ

1−γ 5

K̃ ≡ K β
1−ββ

− 1
κ = κ

(1−γ)(1−β) 6

κα ≡ 1 + α(γ − 1) 8

C ≡ 1−β
β
β

1
κ 8

a ≡ −(m+ 1) 23

b ≡ m− 1−β
β
β

1
κ

1
γσ2 23

K̂ ≡ γσ2(K̃ − 0.5) 9

p ≡ η−K̃(η+γσ2)

K̂
9

q ≡ r− δ
1−γ+K̃η

K̂
9

D ≡ p2/4− q 9

χ ≡ −K̃ = κ
(γ−1)(1−β) 23

π∞ ≡ π02 = −0.5p−
√
D 9

K ≡ −K̂ γ−1
k

11

α1 ≡ 1+ γ
k
m−π01(1+ γ

k
)

(π01−π∞)(1−π01)(π01−m)
11

α2 ≡ 1+ γ
k
m−π∞(1+ γ

k
)

(π01−π∞)(1−π∞)(m−π∞)
11

α3 ≡
γ
k

(1−π01)(1−π∞)
11

α4 ≡ 1
(π01−m)(m−π∞)

11
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Table 2: Baseline parameter values. This table reports the baseline parameters.

Symbol Meaning Value

r Interest rate 0.01

η Equity premium 0.05

σ Stock volatility 0.17

γ Risk aversion 3

δ Time preference rate 0.03

β Consumption weight 0.99

α Consumption weight at death 1.00
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Figure 1: The function G(π)G(π)G(π) in the baseline case. The figure depicts the function G(π). Baseline

parameter values are used yielding a Merton result of m = 0.5767. Besides, the terminal condition for

the finite-horizon solution is π∗(T ) = 0.3867. The solution to the infinite-horizon problem π∞ = 0.5696

is the location of the pole of G.
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Figure 2: Optimal investments over the life cycle in the baseline case. The figure depicts the

optimal proportion invested in stocks for the benchmark calibration reported in Table 2. It also shows

the solution m = 0.5767 to an ordinary Merton problem and the solution π∞ = 0.5696 to the problem

with infinite horizon. The terminal condition for the finite-horizon solution is π∗(T ) = 0.3867.
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Figure 3: Optimal investments over the life cycle for m = 1m = 1m = 1. The figure depicts the optimal

proportion invested in stocks for m = 1. In this case, we increase the equity risk premium from

η = 0.05 in the benchmark case to η = 0.0867. For the remaining parameters the baseline values are

used. The solution to the infinite-horizon problem is π∞ = 0.9274. The terminal condition for the

finite-horizon solution is π∗(T ) = 0.6580.
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Figure 4: Optimal investments over the life cycle for m > 1m > 1m > 1. The figure depicts the optimal

proportion invested in stocks for m > 1. In this case, we increase the equity risk premium from

η = 0.05 in the benchmark case to η = 0.09537 so that m = 1.1. For the remaining parameters the

baseline values are used. The solution to the infinite-horizon problem is π∞ = 0.9582. The terminal

condition for the finite-horizon solution is π∗(T ) = 0.7042.
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Figure 5: Optimal investments over the life cycle for different βββ. The figure depicts the

optimal proportion invested in stocks for different values of β. For the remaining parameters the

baseline values are used. The terminal conditions for the finite-horizon solutions are π∗(T ) = 0.3867

for β = 0.99, π∗(T ) = 0.2596 for β = 0.98, π∗(T ) = 0.1566 for β = 0.97, and π∗(T ) = 0.0675 for

β = 0.96.
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Figure 6: Optimal investments over the life cycle for different γγγ. The figure depicts the

optimal proportion invested in stocks for different values of γ. For the remaining parameters the

baseline values are used. The terminal conditions for the finite-horizon solutions are π∗(T ) = 0.5888

for γ = 1.5, π∗(T ) = 0.5094 for γ = 2, π∗(T ) = 0.3867 for γ = 3, and π∗(T ) = 0.3065 for γ = 4.
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Figure 7: Optimal investments over the life cycle with recursive utility and different φφφ.

This figure assumes that the agent has recursive utility as introduced in Section 7. Therefore, we can

vary the elasticity of intertemporal substitution (EIS) independently of the risk aversion. The figure

depicts the optimal proportion invested in stocks for different values of φ = 1/EIS. For the remaining

parameters the baseline values are used. The terminal conditions for the finite-horizon solutions are

π∗(T ) = 0.3903 for φ = 0.5, π∗(T ) = 0.3871 for φ = 2, π∗(T ) = 0.3867 for φ = 3, and π∗(T ) = 0.3866

for φ = 4.
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Figure 8: Optimal investments over the life cycle with recursive utility and different γγγ.

This figure assumes that the agent has recursive utility as introduced in Section 7. Since we use

recursive utility, we can now vary the risk aversion without changing the elasticity of intertemporal

substitution (EIS). The figure depicts the optimal proportion invested in stocks for different values

of γ and fixed φ = 3, which is the benchmark value in the time-additive case because there we have

γ = φ. For the remaining parameters the baseline values are used. The terminal conditions for the

finite-horizon solutions are π∗(T ) = 0.5873 for γ = 1.5, π∗(T ) = 0.5088 for γ = 2, π∗(T ) = 0.3867 for

γ = 3, and π∗(T ) = 0.3066 for γ = 4.
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