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Non-Technical Summary 
 

The term systematic risk is a well-established concept that derives from works on portfolio choice, 
extended in a general equilibrium framework and in the Arbitrage Price Theory (APT) model. It 
refers to the risk to which an investor in a well-diversified portfolio is exposed, which stems from 
the dependence of the returns on common factors. However, the literature stressed that the 
determinants of systematic risk need to be analyzed with more detail. In this paper, we provide a 
unique framework for systematic risk and network connections, and estimate the feedback 
between network exposures and common factors and their impact on the factor risk exposures and 
risk premia of stock returns. We will show that by introducing into a multifactor asset pricing model 
the impact of contemporaneous links, that exist across assets, when those links are captured by a 
network. The network provide information on the existence of links and might also convey details of 
the intensity of the links existing between assets. Therefore, we aim to couple the systematic and 
idiosyncratic risks with a sort of network risk that would introduce into the model the assets' cross-
dependence, beyond that captured by common factors. Given this further element, we then 
evaluate the effects on traditional uses of the multifactor model. The network relations can be, in 
some sense, forward looking or represent the actual state of the connections across assets. We 
will demonstrate that the presence of interconnections implies that risky assets are exposed to the 
movements (both systematic and idiosyncratic) of other risky assets.  
 
This extension allows a better understanding of the causes of systematic risk and shows that (i) 
network exposures act as an inflating factor for systematic exposure to common factors and (ii) the 
diversification power is reduced by the presence of network connections. Moreover, we show that 
in the presence of network links a misspecified traditional linear factor model presents residuals 
that are correlated and heteroskedastic. We support our claims with an extensive simulation 
experiment. 
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1 Introduction

The term “systematic risk” is a well-established concept that derives from the seminal

work on portfolio choice proposed by Markowitz (1952) and extended in a general equilib-

rium framework by Sharpe (1964), Lintner (1965a, 1965b) and Mossin (1966), and in the

Arbitrage Price Theory model by Ross (1976). It refers to the risk to which an investor

in a well-diversified portfolio is exposed, which stems from the dependence of the returns

on common factors. However, as stressed by Cochrane (2011), there is a need for a better

understanding of the determinants of systematic risk.

In this paper we provide a unique framework for systematic risk and network con-

nections, and estimate the feedback between network exposures and common factors and

their impact on the factor risk exposures and risk premia of stock returns.

A growing literature investigates the role of interconnections between different firms

and sectors as a potential mechanism for the propagation of shocks throughout the econ-

omy. Acemoglou et al. (2012) use network structure to show the possibility that aggregate

fluctuations may originate from microeconomic shocks to firms. Kelly et al. (2013) show

how stock firm volatility is related to customer-supplier connectedness. Billio et al. (2014)

use contingent claim analysis and network measures to highlight interconnections between

sovereigns, banks and insurance. There are several other contributions to the literature on

network analysis: see Billio et al. (2012), Diebold and Yilmaz (2015), Hautsch, Schaum-

burg and Schienle (2012, 2013), Barigozzi and Brownlees (2014) and Ozdagli and Weber

(2015), Fernandez (2011), Kou et al. (2016). Network interconnections and the effects

called network externalities that arise from small and local shocks that can become big

and global are a possibility discarded in standard asset pricing and macroeconomic models

due to a “diversification argument”. As argued by Lucas (1977), among others, microeco-

nomic shocks will average out and thus have only negligible aggregate effects. Similarly,

they will have little impact on asset prices. However, there is also a growing literature on

the role of sectorial shocks in macro fluctuations. Examples include Horvath (1998), Du-

por (1999), Shea (2002) and Acemoglu et al. (2012). Moreover, Ang et al. (2006), among
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others, show that idiosyncratic volatility risk is priced in the cross-section of expected

stock returns, a regularity that is not subsumed by size, book-to-market, momentum or

liquidity effects. From a theoretical point of view, Wagner (2010), Ozsoylev and Walden

(2011), Buraschi and Porchia (2013) and Branger et al. (2014) arrive at similar conclu-

sions. Ahern (2013) empirically documents a positive market price of centrality, i.e., that

more central assets earn higher expected returns.

The contribution of this paper to this literature is to propose a modelling framework in

which network interconnections and common factor risks co-exist. The proposed model is

a variation on the traditional Capital Asset Pricing Model (CAPM) or Arbitrage Pricing

Theory (APT) framework in which networks are used to infer the exogenous and con-

temporaneous links across assets. We are able to disentangle direct exposures of a single

stock to common factors from the indirect exposure to the common factors that arise from

network interconnections. We also provide a number of generalizations to our approach

to make it more flexible and coherent with the empirical evidence, for instance allowing

for asset-specific reaction to network links and introducing time variation into networks.

By building on the newly introduced model, we provide a number of theoretical ele-

ments and pieces of empirical evidence based on a simulation framework. First, focusing

on the dynamics of returns and the exposure to common factors, we show that the presence

of asset interconnection acts to inflate the exposure to common risk sources. Moreover,

we are able to disentangle the exposure to common factors that is structural, which is

present even in the case of no network connections, from the exposure associated with

network links. A similar argument applies to the shocks impacting on an asset return,

whereby network relations expose assets to other assets’ shocks. From a risk perspec-

tive, our approach allows us to decompose the risk of a single asset (or a portfolio) into

four components: (i) the systematic component, (ii) the idiosyncratic component, (iii)

the impact of the asset interconnections on the systematic risk component, that is, the

contribution of network exposure to the systematic risk component, and (iv) the effect of

interconnections between the idiosyncratic risks on the systematic risk component, that
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is, the amplification of idiosyncratic risks that generates systematic/non-diversifiable risk.

Building on this result, we show how diversification benefits are reduced in the presence

of network connections. Moreover, by combining the return dynamics with the variance

decomposition, we can verify that our model is consistent with the presence of correlation

and heteroskedasticity among traditional linear-factor-model residuals, thus providing a

rationale for the empirical evidence found in the literature.

The simulation analysis allows us to disentangle the error estimation of linear factor

models that ignore the presence of network connections. In particular we show that, when

asset returns are significantly related to network interconnections, the factor loading esti-

mation of common factors is largely misspecified if the estimation is based on a traditional

linear factor model. Moreover, the residuals’ correlations start drifting away from zero if

network connections are ignored in the model estimation.

Finally, we also evaluate the impact of networks on the estimation of risk premiums

and show that the premiums estimated by our approach and by a traditional linear factor

model are equivalent in the long run (under some assumptions on the evolution of the

network over time). However, our approach allows for local (conditional) expected returns

that change according to changes in the network structure, and thus lead to price changes

even if the risk premiums are time-invariant.

The remainder of the paper is organized as follows. Section 2 describes network models.

Section 3 presents our model combining network links and factor exposure, while Section

4 introduces a set of generalizations making the model more flexible. Section 5 describes

the estimation methodology for the model augmented with the network links. Section 6

presents the simulation analysis and finally Section 7 concludes.
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2 Network Models in Finance

2.1 Review of the literature

Network models have featured in an extremely diverse array of applications: in the so-

cial sciences with studies related to social networking on websites such as Facebook, in

the natural sciences with application to protein interactions, in government intelligence

where they are used to analyse terrorist networks, in politics with application to bill co-

authorship, in economics with the potential to be used in labour market analysis, and

many other areas. In finance, network models have most frequently been used to assess

financial stability. In fact, interconnections between financial institutions create poten-

tial channels for contagion and the amplification of shocks to the financial system that

can also propagate into the “real economy”. Theoretical and empirical studies in this

area have garnered considerable interest in the aftermath of the 2007-2009 financial crisis.

Network representation of interconnections ranges from linkages extracted from balance-

sheet information to connections estimated by means of econometric approaches based on

market, accounting or macroeconomic data.

The majority of such “real-world” networks have been shown to display structural

properties that are neither those of a random graph, nor those of regular lattices.

In order to evaluate the relevance and the price of interconnections in the financial

system it is fundamental to understand all of the channels by which small and local shocks

can become big and global.

Empirical network modelling has been conducted to assess asset pricing linkages via

contagion (Allen and Gale, 2000; Dasgupta, 2004; Leitner, 2005; Billio et al., 2012; Bianchi

et al., 2015; Diebold and Yilmaz, 2014; Hautsch, Schaumburg and Schienle, 2012, 2013.),

linkages via balance sheets (Cifuentes, Ferrucci and Shin, 2005; Lagunoff and Schref, 2001)

and how failures of institutions result from mutual claims on each other (Furfine, 2003;

Upper and Worms, 2004; Wells, 2004; Billio et al., 2014; Ozdagli and Weber, 2015). Allen

and Babus (2009) provide a review of network models in finance.
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Much of the empirical finance literature has focused on “direct”contagion arising from

firms’ contractual obligations. Direct contagion occurs if one firm’s default on its contrac-

tual obligations triggers distress (such as insolvency) at a counterparty firm. Researchers’

simulations using actual interbank loan data suggest that “domino defaults” arising from

contractual violations are very unlikely (see Furfine, 2003; Elsinger, Lehar and Summer,

2006; Upper and Worms, 2004; Mistrulli, 2011; Degryse and Nguyen, 2007; Van Lelyveld

and Liedorp, 2006; Alves et al., 2013), though they can be highly destructive in the event

that they do materialize.

2.2 Formal representation of networks

Formally, we could represent networks as nodes that are connected (in general) to a subset

of the total number of nodes in the network, in which connections represent links across

nodes. A financial system could be represented as a network structure in which nodes

represent assets or the value of financial or non-financial institutions, and shocks on one

asset/institution are transmitted to those connected to it.

Networks are, in general, graphically represented. Nevertheless, networks have an

equivalent (square) matrix representation. Let us call W the K-dimensional square ma-

trix representing a network composed of K financial assets/companies. Each entry wi,j

represents the possible connection between assets i and j. A zero entry indicates that the

two assets are not connected, while a non-null entry indicates the existence of a connec-

tion. Depending on the approach adopted to estimate the network, non-null entries might

differ from one another, tracking the strength/intensity of the connection, or be equal to

one another, simply indicating the existence of a connection. An example of the latter

case is the following matrix:
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W =



0 1 0 1 0

1 0 1 0 0

0 1 0 1 0

0 0 1 0 1

0 0 0 1 0


, (1)

where it should be noted that the diagonal contains only null elements (no asset influences

itself) and that the network is not symmetric as the first asset is connected to the fourth,

but the opposite is not true. In general, networks also convey a further element, the di-

rection of the link. If links are all bidirectional, the network is symmetric. By convention,

in the present paper we assume that a non-null element wi,j indicates the existence of a

link between assets i and j with an effect from j to i.

Interestingly, matrices similar to that given in equation (1) are very common in other

economic and statistical applications, those concerning research and studies associated

with spatial econometrics and spatial statistics. In these fields, subjects (such as towns,

buildings or regions) are neighbours of each other in a physical way, and the matrix W

represents the neighbouring relations, with entries possibly associated with the physical

distance existing between two subjects; such matrices are normally called spatial matrices,

and are commonly row-normalized.

Matrix representation of financial networks might thus be seen as the financial parallel

of spacial matrices. Clearly, neighbouring relations are no longer physical, but are the

outcome of a specific model, measurement or estimation approach. Going back to the

graphical representation of networks, in which nodes are connected to one another, we

might state that connected nodes (assets/firms) are thus neighbours. Finally, we stress

that, if we consider matrices to monitor only the existence of connections across assets,

we adhere to the concept of “first-order contiguity” whereby a unit entry denotes the

existence of a connection and the fact that two assets are neighbours (see LeSage, 1999).
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In addition, by convention in spatial statistics/econometrics, the main diagonal of the

matrix W contains zero elements.

In the following, we will clarify how network connections, as monitored by the matrix

W , will convey relevant information on the evolution of asset returns. In doing so, we do

not restrict ourselves to a specific structure of W , that is, a W that monitors the existence

of a connection and/or the intensity of the link, but propose a model that can be used

with any form of W . Moreover, following Elhorst (2003), we normalize W so that, if we

are monitoring only the existence of the connection, we equalize the impact of each unit

on all other units. We discuss the normalization of W further in a later section. In the

empirical part of the paper, we also briefly discuss alternative methods that can be used

to estimate the existence of a connection between two assets.

3 The Systematic Effects of Network Exposure

3.1 The classic framework

Ever since the publication of the seminal works of Sharpe (1964), Lintner (1965a, 1965b),

and Mossin (1966), linear returns models have attracted huge interest in the financial

economics literature, and have had an extraordinary impact on both research and prac-

tice. In the last few decades, multifactor generalizations of the CAPM model have been

proposed and are now as widespread as the single-factor model. The first multifactor

model stems from the work of Ross (1976) on the APT, and the most commonly used

approaches to pricing now take into account the developments of Fama and French (1993,

1995) and Carhart (1997), leading to the so-called three-factor and four-factor CAPM

models, respectively.

Our starting point is a multifactor model, within which all the previous cases are

nested, and which we take as a general case into which network exposures can be intro-

duced. We thus consider a linear specification in which a K-dimensional set of time-t risk
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asset returns, which we denote by Rt, depends on a set of M observable zero-mean risk

factors Ft:

Rt = α + βFt + εt. (2)

In equation (2), α is a K-dimensional vector of intercepts, β is a K ×M matrix of

parameters monitoring the exposure of the risky assets to the common factors included

in the M -dimensional vector Ft, and εt is the vector of idiosyncratic shocks.

If we take a pricing perspective, and assume that the market is in equilibrium, then

the model intercept can be replaced by the vector of expected returns

Rt = E [Rt] + βFt + εt. (3)

Moreover, expected returns depend on the factor risk premiums Λ satisfying

E [Rt] = rf + βΛ. (4)

The multifactor model allows for the decomposition of the total risk of the assets into

the sum of two components:1

V [Rt] = βΣFβ
′ + Ωε, (5)

where V [·] is the variance operator, V [Ft] = ΣF is the covariance matrix of the common

factors, and V [εt] = Ω is the covariance matrix of the idiosyncratic shocks. The first term

on the right represents the systematic contribution to the total risk, while the second term

is the idiosyncratic risk contribution. The same decomposition of the total asset risk also

applies to a generic portfolio formed using the K assets. If we take a vector of portfolio

weights ω,2 the portfolio returns satisfy the following equalities:

1This holds for any multifactor model.
2We assume that the portfolio weights sum to 1 but we do not exclude short selling.
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rp,t = ω′Rt (6)

= ω′E [Rt] + ω′βFt + ω′εt

= E [rp,t] + βpFt + ςt,

where E [rp,t] = rf + βpΛ. Moreover, we know that the total risk of the portfolio is given

by

V [rp,t] = ω′βΣFβ
′ω + ω′Ωεω (7)

= βpΣFβ
′
p + σ2

ς .

This framework has relevant implications for portfolio risk and diversification. If we

take a diversification point of view, the final purpose is to control or sterilize the impact

of idiosyncratic asset risks on the total portfolio risk. This corresponds to the willingness

of achieving the following limiting condition:

limK→∞ω
′Ωεω = σ̃2 > 0, (8)

where σ̃2 is a small quantity depending on the idiosyncratic shock variances and corre-

lations, as well as on the portfolio composition. In a simplified setting, assuming that

idiosyncratic shocks are uncorrelated, that their variances are set to an average value σ̄2

and taking an equally weighted portfolio, we have the following well-known result:

limK→∞ω
′Ωεω =

1

K
σ̄2 = 0, (9)

showing that diversification allows the idiosyncratic shocks to be sterilized.

In this framework, the focus is on the shocks’ impact, since we know that the sys-

tematic risk component cannot be diversified out, as it is driven by common factors.

Therefore, in the multifactor model, the introduction of new assets allows a contraction
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of the contribution of the idiosyncratic component to the total risk of the portfolio but

has, on average, no effects on the systematic components.

3.2 Introducing network exposure

Our paper aims at introducing into a multifactor asset pricing model the impact of con-

temporaneous links that exist across assets, when those links are captured by a network.

As discussed in the previous section, networks provide information on the existence of

links and might also convey details of the intensity of the links existing between assets.

Therefore, we aim to couple the systematic and idiosyncratic risks with a sort of network

risk that would introduce into the model the assets’ cross-dependence, beyond that cap-

tured by common factors. Given this further element, we then evaluate the effects on

traditional uses of the multifactor model.

Let us assume that the risky assets are interconnected and that those links can be

represented by a network. The network relations, as observed in the previous section,

can be, in some sense, forward looking or represent the actual state of the connections

across assets. From this point onward, we assume that the network will impact on the

contemporaneous relations across assets. We will show that the presence of intercon-

nections implies that risky assets are exposed to the movements (both systematic and

idiosyncratic) of other risky assets. Moreover, we will highlight how risky assets might

differ in terms of interconnections with other assets. This creates an additional form of

heterogeneity, going beyond those associated with the different exposures to common risk

factors and with the different degrees of relevance of idiosyncratic shocks. Starting from

this assumption, we reconsider the interpretation of a general multifactor model. If we

postulate about the existence of contemporaneous relations across risky assets, we must

acknowledge that such relations are not explicitly accounted for in equation (2). As a

consequence, the beta matrix with respect to common factors that can be recovered from

a traditional linear factor model, i.e. that of equation (2), cannot be directly linked to

both the interconnections and the source of network heterogeneity across risky assets.

10



One possible way of reconciling the model in equation (2) with the network exposure

is to interpret the model as a reduced-form model whose reduced-form parameters (the

betas and the error covariance) are functions of structural parameters’ network exposure

and structural factors such as macro factors etc. The latter thus include the true exposure

to common structural factors, the exposure to other assets due to the interconnections

(or network exposure) and the structural idiosyncratic shock’s variance.

To shed some light on the previous points we rewrite the model in equation (3) as a

structural simultaneous equation system (later on called a structural model),

A (Rt − E [Rt]) = β̄Ft + ηt, (10)

where the matrix A captures the contemporaneous relations across assets and coexists

with the common factors, which are here considered as exogenous variables. In equation

(10) the covariance of ηt represents the structural idiosyncratic risk while the parameter

matrix A is associated with assets’ interconnections, and thus with a network. Further

details on the latter aspect will be given in a few paragraphs’ time. If we translate the

model in equation (10) into a reduced form, we have

Rt = E [Rt] + A−1β̄Ft + A−1ηt

= E [Rt] + β?Ft + ε?t , (11)

where β? is the matrix of reduced-form betas, equal to β? = A−1β̄ and ε?t is the vector

of reduced-form errors.3 We stress two relevant elements. Firstly, we observe that the

reduced-form parameters β? are non-linear functions of the interconnections between

assets (the matrix A) and of the structural exposure to common structural factors (the

matrix β̄). Secondly, the covariance matrix of the errors ε?t is influenced by the presence

of interconnections between assets.

3We include the star as a suffix to distinguish the reduced-form errors implied by our model from the
errors of the traditional multifactor model.
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We postulate that a network structure exists, thus assets are interconnected and at

the same time the assets depend on a common set of risk factors. If on these assets we

estimate the linear factor model in equation (2) without taking the network into account,

we have, by construction, that the shocks are correlated.4 This is a consequence of the

fact that the reduced-form betas can be estimated consistently in equation (11) anyway

by standard linear regression models, but the residuals’ covariance is not coherent with

the theoretical expectation, that is, idiosyncratic shocks are uncorrelated. Therefore, the

empirical evidence of idiosyncratic shock correlation found in the residuals of multifactor

models might be due to the exclusion of contemporaneous relations. This is also coherent

with the following finding of Ang et al. (2006): idiosyncratic volatility risk is priced in the

cross-section of expected stock returns, a regularity that is not subsumed by size, book-to-

market, momentum or liquidity effects. In addition, if we assume that the network links

affect the matrix A, and estimate the model in equation (11), the residuals’ covariance will

be a function of the network links.5 So far our analysis concerns only observable factors.

If the common factors are estimated by means of statistical approaches rather than being

observed variables, the network exposure, if present, will be totally destroyed. In fact,

statistical factors are generally estimated from a reduced-form model. Therefore, if we

adopt principal component analysis, or fit a latent factor model, it might happen that

one of the identified factors represents a sort of proxy or biased estimate of the network

exposure, with possible further biases on the estimated factor loadings. Such a problem

might be overcome by estimating a latent factor model accounting for contemporaneous

links across assets. Examples can be found in the studies of Barigozzi and Brownlees

(2014) and Bianchi et al. (2015), who show that, if network links are not known, they

might be estimated by looking at the covariance of A−1ηt. However, in such a case,

the economic interpretation of network links might be difficult to recover and could be

4This holds if we assume that A is not diagonal. However, this is an inconsequential restriction as, if
A is diagonal, we do not have contemporaneous relations between assets.

5Assuming normality for the model innovations ηt, such that ηt ∼ N (0,Ω), we have that the reduced-
form residuals follow the distribution N(0, A(W )−1ΩnA(W )−1), where the reduced residuals are ε?t =
A(W )−1ηt.
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exposed to estimation error. In addition, the common factors we choose in the model

must be exogenous. Our approach aims at reintroducing contemporaneous relations into

the multifactor model, thus allowing both the impact of network exposure and the direct

exposure to common structural factors to be recovered. Note that the two elements

coexist, and network exposure can be seen as an additional common risk source going

beyond that of common factors. We might even define the exposure to common factors as

the exogenous systematic risk exposure, while the network exposure can be labelled as an

endogenous systematic risk exposure. Further, we stress that we label the ηt in equation

(10) as structural idiosyncratic shock to distinguish it from the vector ε?t in equation (11)

that represents the reduced-form idiosyncratic shock. The simultaneous equation system

in equation (10) poses serious challenges for the estimation of the matrix A. We overcome

this potential problem by resorting to network links. If we postulate the existence of

network connections, exogenously provided by direct exposures and indirect, we can state

that linked assets can easily be recast in a proximity matrix W as mentioned in Section

2. The proximity matrix can be used to impose a structure on the matrix A. Given the

matrix W , as extracted from a network, we can easily specify a spatial autoregressive

(SAR) model (see Anselin, 1988; LeSage and Pace, 2009):6

Rt − E [Rt] = ρW (Rt − E [Rt]) + β̄Ft + ηt, (12)

where the (scalar) coefficient ρ captures the response of each asset to the returns of

other assets, as weighted by the corresponding row of W . Moreover, we assume that the

error term ηt has a diagonal covariance matrix, that is, V [ηt] = Ωη is diagonal. Such

an assumption is required for identification purposes, as we will discuss in the model

estimation section. If we assume, as we will do in the following, that the matrix W is

known, the expected returns are conditional upon the (known) W .7

6Anselin (1988) calls the model mixed-regressive spatial-autoregressive. We stick here to the simpler
acronym adopted in LeSage and Pace (2009).

7To maintain a simplified notation, we do not report the conditioning with respect to W in the returns
expectations.
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At the single asset level, the model reads as follows:

Ri,t = E [Ri,t] + ρ

k∑
j=1

wi,j (Rj,t − E [Rj,t]) + β̄iFt + ηi,t, (13)

where wi,i = 0, wi,j ≥ 0 and
∑k

j=1wi,j = 1. Taking a financial point of view, the

coefficients in the vector β̄i represent the exposure to the common factors, or exogenous

exposure, while the coefficient ρ tracks the endogenous risk exposure, which is influenced

by the network structure and is thus called network exposure. Further insights on the

interpretation of the model coefficients will be given in the following subsections.

The model in equation (12) can be rewritten in a more compact form as follows:

(I − ρW ) (Rt − E [Rt]) = β̄Ft + ηt, (14)

thus highlighting the fact that spatial proximity and the associated SAR model give a

structure to the contemporaneous relation matrix, which is now parametrized as

A = I − ρW. (15)

The structural model now includes contemporaneous relations, driven by links or con-

nections across assets, systematic components and asset-specific shocks. We now elaborate

on the relation between returns, risk, networks and risk factors.

3.3 Returns, networks and risk factors

The reaction of one asset to common factors and network exposure becomes clearer once

we rewrite the model in a reduced-form representation. In this way, we highlight the

impact of the network connections included in W on the reduced-form parameters (the

reduced-form betas and the reduced-form shock’s covariance). The reduced-form model
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reads as in equation (11) with A = I − ρW now:

Rt = E [Rt] + (I − ρW )−1 β̄Ft + (I − ρW )−1 ηt (16)

= E [Rt] + β?Ft + ε?t , (17)

where the factor loadings equal β? = (I − ρW )−1 β̄ and for the moment we assume that

A = I − ρW is non-singular.8 For simplicity, we focus on the case in which the network

exposure is driven by a single parameter, ρ. However, all derivations and comments also

apply to the more general parametrizations of the matrix A that we will introduce in

Section 4.

From LeSage and Pace (2009) we take the following relation:

(I − ρW )−1 = I + ρW + ρ2W 2 + ρ3W 3 . . . , (18)

where the term ρW monitors the effect of linked assets (in spatial econometrics, the

neighbours). For instance, if asset j is linked to asset i we have a non-null entry in Wij.

Differently, ρ2W 2 is associated with the effect on asset j induced by the assets linked to

asset i (in spatial econometrics called the second-order neighbours). The latter relation

can be further generalized to higher orders. Notably, the matrices W j might also include

a so-called feedback loop as, following the previous example, asset i can be linked to asset

j (making the relation bidirectional), causing the matrix W j to have non-null elements

on the main diagonal. We stress that, despite the fact that the summation has an infinite

number of terms, by imposing that |ρ| < 1 we can easily ensure that the effect of linked

assets converges to a finite number. On the contrary, if |ρ| > 1 we might have explosive

patterns. In general, the coefficient ρ takes values in the range
(
λ−1min, λ

−1
max

)
, with λmin

and λmax respectively the minimum and maximum eigenvalues of W . In the case of row-

normalization of the W matrix, in spatial econometrics a commonly adopted range is

8See the model estimation section for details on the constraints that ensure non-singularity of A.
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[0, 1).

Using equation (18), we can rearrange the model in equation (17) as

Rt = E [Rt] + β̄Ft +
∞∑
j=1

ρjW jβ̄Ft + ηt +
∞∑
j=1

ρjW jηt. (19)

Such a representation highlights that the impact of the common factors as well as that

of the idiosyncratic shocks on the risky asset returns can be decomposed into two parts.

For both elements, the first component is the traditional, or direct, or structural impact

of the structural common factor, while the second component is the impact associated

with the network exposure. We can thus define the following four elements:

a) β̄: the structural exposure to the structural common factor;

b)
∑∞

j=1 ρ
jW jβ̄: the network exposure to the structural common factor;

c) ηt: the idiosyncratic shocks;

d)
∑∞

j=1 ρ
jW j: the network impact of idiosyncratic shocks.

Note that the network-related exposures depend on the structure of the matrix W as

well as on the parameter monitoring the network impact, ρ. A relevant remark can be

made in relation to the network impact of common factors. Let us take, for simplicity,

a specific common factor. That is, we focus on a single column of Ft and consider the

impact of the m-th factor on the risky asset returns:

β?m = β̄m +
∞∑
j=1

ρjW jβ̄m. (20)

Starting from the observation that the reduced-form betas equal the sum of two ele-

ments, equation (20) provides two relevant insights.

First, we note that the network exposure to common factors acts as a multiplier of

the structural exposure if the coefficient ρ is positive (W ’s elements are positive anyway).
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Therefore, shocks to the common factors will be amplified by (i) the presence of connec-

tions across assets, that is, when, for asset i, the i-th row of W contains at least one

non-null element, (ii) the change in the impact of network connections, that is, when the

coefficient ρ increases, and (iii) by changes in the network structure, that is, when the

matrix W changes. Note that, if asset i is not connected to other assets, all products

ρjW jβ̄i are equal to zero.

From a different viewpoint, the presence of network exposure allows us to decompose

the reduced-form betas into two components, a structural one and a multiplier depending

on the network structure, the matrix W . The estimation of a standard factor model,

where the data-generating process includes network dependence across returns, will pro-

vide partial information, returning only the combination of the two components, that is,

only the reduced-form betas.

Now assume that, for the risky asset i, the m-th common factor is not relevant (that

is, β̄i,m = 0). In this case, in the standard linear factor models, the common factor

will have no role in explaining the asset returns. However, when assets are linked and

network exposures are taken into account, a common factor to which a risky asset has

zero structural exposure might still be relevant for explaining the evolution of the risky

asset return. Such an effect is not direct but induced from the network exposure and is

associated with the existence of non-null elements in the i-th row of the matrix W . Take,

for instance, the following case:

W =


...

0i 1 0K−i−1
...

 , (21)

where asset i is connected only to asset i+ 1 and the subscripts denote the lengths of the

row vectors of zeros. Moreover, assume the following factor exposure for both assets:
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β̄ =



...

β̄1,i 0 0 0

β̄1,i+1 β̄2,i+1 0 0

...


, (22)

where, in a multifactor model, asset i is not exposed to factor 2, while asset i+1 is affected

by the same risk factor, and both assets are exposed to factor 1. Asset i’s dependence on

risk factors can thus be represented as

β̄1,iF1,t + ρβ̄1,i+1F1,t + ρβ̄2,i+1F2,t +
∞∑
j=2

(
ρjW jβ̄Ft

)
|i, (23)

where |i identifies the i-th element of a vector. Note that equation (23) shows that, because

of the network effect, asset i increases the exposure to factor 1 of ρβ̄1,i+1 and is indirectly

exposed to factor 2 of ρβ̄2,i+1, and the last term on the right represents further elements

that can be specified only through the knowledge of the entire matrix W . Therefore, even

if risky asset i is not (structurally) exposed to a common factor (in the previous example,

factor 2), the common factor will still play a role if it impacts on the returns of the assets

to which i is linked.

Such a result can be further generalized by focusing, for instance, on sector-specific

risk factors. Those factors, in the presence of a network exposure, despite being sector-

specific, will have a systematic impact on all connected assets. Moreover, if we disregard

the network exposure, we might also incur the risk of misinterpreting the impact of risk

factors. In fact, by estimating the reduced-form model, we might label as common a

factor that in reality is structurally related just to a subset of the investment universe

and that impacts on other assets only through network connections.

A similar property exists for the idiosyncratic shocks. In fact, if we assume they are

uncorrelated, the existence of network connections implies that the structural shocks of

one asset impact on the returns of all the assets connected to it. Therefore, shocks on
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single assets can have effects on many other risky assets.9 This evidence on the impact of a

given asset’s factor exposures and the shocks of linked assets resembles the decompositions

typically adopted in spatial econometrics; see, among many others, LeSage and Pace

(2009), as well as Ozdagli and Weber (2015) for a recent application. We note that the

latter decompositions are appropriate in a framework where, for given dependent-variable

measures across subjects, we have a number of covariates, each of which is available

with variable-specific observations. In our case, we do have common factors (not asset-

specific variables) and therefore these decompositions cannot be applied. From a pricing

perspective, starting from the reduced-form representation we can easily show that the

expected returns equal

E [Rt] = rf + β̄Λ +
∞∑
j=1

ρjW jβ̄Λ. (24)

Expected returns are thus influenced by network links that amplify the compensation

for being exposed to the common factors. Further, we note that the pricing result depends

on, and is thus conditional upon, the network structure, as summarized by W , which we

assume to be known and time invariant. In fact, if we postulate that the coefficient ρ is

positive and that the elements of W are all positive, the existence of links across assets

induces higher expected returns than in the case of links being absent. Moreover, bearing

in mind the previous discussion, the expected returns might depend on risk premiums

associated with factors to which a given asset is not directly (structurally) exposed. The

model estimation section discusses further elaborations on the risk premiums that emerge

as consequences of the risk premium estimation.

In addition, we stress that the use of a network that is very dense, thus implying a

matrix W that is almost full, will have further impacts. In fact, a full W implies that

all idiosyncratic shocks are correlated. However, from our viewpoint, this corresponds to

9Summary measures of the exposure to common factors and idiosyncratic shocks can be obtained by
mimicking the approaches used in spatial econometrics. A discussion on this topic is included in LeSage
and Pace (2009); see their Section 2.7. These measures have been used in a financial framework by
Asgharian, Less and Liu (2013). We also note that the decomposition of asset returns into four elements
is equivalent to that proposed by Abreu et al. (2005) for separating the standard impact of covariates
from the impact that is due to the spatial links, and is thus an alternative to the impact measures of
LeSage and Pace (2009).
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indirect evidence of model misspecification as an additional common factor is now present

but not taken into account. As a consequence, such common structural factor risk must

be priced, and could generate the empirical evidence shown by Ang et al. (2006). The

latter case could also correspond to empirical evidence challenging the validity of the

APT approach. From a different viewpoint, our modelling framework still satisfies the

assumptions required for APT. As we show in the next section, the presence of a network

exposure, despite inducing correlation across the idiosyncratic shocks, does not exclude

the existence of diversification benefits. In line with the network literature, we can also

establish a link between our model and a measure of network centrality. In fact, Katz

(1953) uses the expression in equation (18) to introduce his centrality measures. If we

denote by x the score vector of the centrality, while W is the adjacency matrix, 1 a vector

of ones, and α and C arbitrary constants, then Katz (1953) shows that the centrality

vector equals

x = (I − ψW )−11, (25)

with ψ being a free parameter. Note that the ψ manages the relationship between the

centrality vector x and a limiting constant value for all centrality scores. In other words, if

ψ is zero all the nodes have the same centrality value. Otherwise, if ψ assumes increasing

values,10 then W plays an increasing role.

3.4 Risk decomposition and portfolio diversification

The model in equation (10) allows us to recover a risk decomposition similar to that avail-

able for the standard linear factor model in equation (2). The starting point is the reduced

form introduced in equation (17). Equation (17) highlights that the estimation output

of standard multifactor models can be consistent with the presence of contemporaneous

links across assets, and this allows us to elaborate on the returns covariance structure.

10With an upper limit at 1/λmax, λmax being the maximum eigenvalue of W , the value for which
(I − ψW )−1 is non-singular.
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In fact, we can redefine A = (I − ρW )−1, and then write the total variance of the risky

assets as follows:

V [Rt] = Aβ̄β̄′A′σ2
m +AΩηA′. (26)

Despite being equivalent to the traditional risk decomposition of a multifactor model,

equation (26) provides a relevant insight. In fact, both the systematic and idiosyncratic

risk components are influenced by the presence of interconnections across assets, as the

matrixA appears in both terms on the right hand side. This also shows that, if we estimate

the reduced-form model using standard linear methods, our evaluations of the systematic

and idiosyncratic risk components are in reality a blend between the structural loadings

and idiosyncratic risks, and the network relations. Keiler and Eder (2013) suggest that the

presence of spatial links could be interpreted as a systemic risk contribution. However, the

previous decomposition provides an alternative view, in which spatial dependence is not

an additive source of risk but rather a multiplicative one. In that case, the impact of the

spatial dependence of a single asset cannot easily be recovered. In fact, the contribution to

the asset risk due to the spatial dependence depends on both the structure of the network

W and the spatial parameter ρ. The two elements impact on the systematic contribution

and on the idiosyncratic structural shock variances in a non-linear way. Obviously, the

same structure appears at the portfolio level, where we have

V [rp,t] = ω′Aβ̄ΣF β̄
′A′ω + ω′AΩηA′ω. (27)

We first note that, if asset interconnections are not present (that is, when A = I), the

idiosyncratic risk equals Ωη while the systematic risk component is β̄ΣF β̄
′. We rewrite the

portfolio variance decomposition in equation (27) by adding and subtracting the portfolio

idiosyncratic and systematic variance components when they are not influenced by asset

interconnections:
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V [rp,t] = ω′Aβ̄ΣF β̄
′A′ω + ω′AΩηA′ω ± ω′β̄ΣF β̄

′ω ± ω′Ωηω. (28)

With some rearrangement, the total portfolio variance can be recast into a decompo-

sition comprising four different terms:

V [rp,t] = ω′β̄ΣF β̄
′ω︸ ︷︷ ︸

I

+
(
ω′Aβ̄ΣF β̄

′A′ω − ω′β̄ΣF β̄
′ω
)︸ ︷︷ ︸

II

(29)

+ ω′Ωηω︸ ︷︷ ︸
III

+ (ω′AΩηA′ω − ω′Ωηω)︸ ︷︷ ︸
IV

. (30)

We make the following interpretations of the four risk components:

I the structural systematic risk component that depends on the structural loadings

from the common factors and from the covariance of the common factors; this is the

exogenous systematic effect;

II the effect of asset interconnections on the systematic risk component, or the first

contribution of network exposure to the total risk; this is the endogenous systematic

effect;

III the structural idiosyncratic component that depends only on the covariance of the

structural shocks;

IV the effect of interconnections on the idiosyncratic risk, or the second contribution

of network exposure to the total risk; this might be interpreted as an endogenous

amplification of idiosyncratic risks.

Note that by adding the second and fourth terms we obtain the total contribution of

network exposure to the total portfolio risk. We finally note that the model with asset

interconnections is the standard multifactor model if there are no interconnections, that

is if W is a null matrix or if the coefficient ρ is zero.
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In addition, the network exposure impacts on the idiosyncratic part of the variance.

This implies that the diversification benefits might be endangered, depending on the

network structure. In fact, despite the fact that the fourth term decreases with an increase

in these cross-sectional dimensions, the speed of decrease is smaller than in the case

without network effects.

Similarly to the standard linear factor model, we can recover analytical elements in

a simplified setting. The covariance matrix Ωη is diagonal; we further assume that the

diagonal elements are set to an average value, σ̄2 = 1. In addition, we take an equally

weighted portfolio and focus on the limiting case in which all assets are connected (thus

W has zeros only over the main diagonal, while off-diagonal terms equal 1
K−1 after row

normalization). In this case, we have that

ω′AΩηA′ω = σ̄2ω′AA′ω (31)

=
σ̄2

K2
i′KAA′iK

=
K + ρ2

(K + ρ)2 (ρ− 1)2
σ̄2,

where K is the number of assets and iK is a K-dimensional vector of ones.11 Moreover,

we have that

limK→∞
K + ρ2

(K + ρ)2 (ρ− 1)2
σ̄2 = 0, (32)

thus preserving the diversification benefit. However, the idiosyncratic risk contribution is

higher than in the case without spatial dependence (i.e. with ρ = 0). In fact, we can show

that the above-reported portfolio idiosyncratic risk is higher than 1
K
σ̄2, thus confirming

that term IV is positive.

11In the special case considered, the diagonal elements of A equal (K−1)ρ−K
ρ2+(K−1)ρ−K and the off-diagonal

elements are −ρ
ρ2+(K−1)ρ−K . Moreover, the diagonal elements of AA equal Kρ2+[(K−1)ρ−K]2

[ρ2+(K−1)ρ−K]2
and the off-

diagonal are (K−1)ρ2−2ρ[(K−1)ρ−K]

[ρ2+(K−1)ρ−K]2
. Summing up the elements in AA and simplifying, we obtain the

above-reported result.
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The previous model thus gives a framework in which we can analyse the impact at

the portfolio level of the interconnections we might observe across assets, and how those

interconnections can endanger/limit the benefits of portfolio diversification.

4 Model Generalizations

In this section we provide two generalizations of the model by allowing asset-specific

reaction to the network and introducing a time change into the network structure. We

also add further discussion on the model’s interpretation, in particular on the sign of the

network-related parameters.

4.1 Heterogeneous network reaction

The model in equation (14) has, however, a very restricted structure. There is a single

parameter, ρ, driving the network exposure. This can easily be generalized by allowing

asset-specific responses to the network structure. We can thus modify the contemporane-

ous relation matrix of equation (15) into

A = I −RW, (33)

where R = diag(ρ1, ρ2, . . . , ρK) is a diagonal matrix. This model is similar to the fixed

coefficient specifications for spatial panels discussed in Elhorst (2003). A clear advantage

of such a structure is given by the possibility that assets have different network exposures,

as for each asset the model becomes

Ri,t = E [Ri,t] + ρi

k∑
j=1

wi,j (Rj,t − E [Rj,t]) + β̄iFt + ηi,t. (34)

To estimate the asset-specific parameters, the network must satisfy an identification

condition: each asset must be connected to at least one other asset. If this is not the case,

24



the diagonal of matrix R must be restricted in such a way that unconnected assets will

not have a network exposure. Further details will be discussed in the estimation section.

4.2 On the sign of the coefficient ρ

Up to this point, we have not discussed the sign of the coefficient ρ. Intuitively, we expect

the assets to be positively related to one another, as the links come from a network. We

thus imagine that shocks are transmitted to connected assets with their signs preserved.

If we take a simplified model with a single coefficient ρ, it is highly improbable that we

will ever observe negative coefficients. In fact, a single coefficient represents a sort of

average reaction of the asset to the shocks coming from its neighbours.

However, in a model accounting for the heterogeneity of the reaction to the network

exposure, negative asset-specific coefficients might appear. In other words, we cannot

exclude a priori that a shock to one asset will lead to an opposite movement of a linked

asset. We explain such a finding by making a parallel with negative correlations. If

two assets are negatively correlated, their joint introduction to a portfolio will lead to

a decrease of the overall variance. In a factor model, negative correlations across asset

returns can be interpreted by loadings on the (same) common factors having different

signs. In our framework, negative correlations across asset returns can emerge both in

response to different signs in the factor loadings but also due to the presence of a negative

asset-specific reaction to the network exposure.

Consider the reduced form of our model as represented in equation (30). In this

case, the innovation term has a non-diagonal covariance. If we estimate the reduced-form

model, the innovations could show evidence of non-null correlations, some of them being

negative. They can be due both to the presence of opposite exposure to the common

structural factors, whose coefficients have been estimated by a biased estimator (due to

model misspecification), but also due to the presence of negative coefficients ρi.

In a general model with heteregeneous asset reactions to the network exposure, the

components II and IV in the risk decomposition presented in equation (30) can become
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negative. In such a case, the network exposure reduces risk, and this could also be seen

as a kind of flight-to-safety effect: if shocks hit financial assets and are then transmitted

to industrial pro-cyclical sectors, we cannot exclude the possibility that the anti-cyclical

sectors have an opposite network exposure.

Within our model, negative ρ might thus exist, but how can we interpret them from

a pricing perspective? We read them as evidence of risk absorption due to the network

exposure. In fact, a negative ρi allows a reduction of the exposure of one asset to the

common factors, since the i-th component of the second term in equation (20) becomes

negative. Risk absorption also has consequences for expected returns, leading to a reduc-

tion of the contribution of network exposure. In fact, the i-th component of the third

term in equation (37) also becomes negative.

4.3 Time change in the network structure

The spatial econometrics literature generally assumes that the spatial proximity matrix

is time invariant. In fact, if the matrix W depends on physical measures, such as those

is the spatial distance, they can safely be assumed to be constant over time. However,

in a financial framework, the connections between assets might change over time for a

number of reasons, such as, for instance, the occurrence of an unexpected market shock,

or a merger or acquisition. Similar approaches have been adopted by Asgharian et al.

(2013) and Keiler and Eder (2013). We are still assuming that the network is exogenous

with respect to the linear structural model,12 and the contemporaneous matrix can be

further rewritten as

At = I −RWt, (35)

where we highlight that the network changes over time, and thus leads to a time-varying

12We might relax the exogeneity assumption by stating that the network is known conditional upon
the past.
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matrix W . In turn, this induces time-dependence on the matrix A, as well as on the

reduced-form parameter matrices, both on the betas and on the covariance of idiosyncratic

shocks. That is, we also have heteroskedasticity. Nevertheless, we might postulate that

the dynamic of Wt is smooth, and operates at lower time scales than those monitoring

the evolution of returns (for instance, we can assume the matrices W change over the

years, or after specific events such as crises). Therefore, the heteroskedasticity is mild,

and the betas are evolving slowly. The use of time-varying matrices W thus leads to

a time change in the spatial dependence, differing from the approach of Blasques et al.

(2014) who obtain the same result by letting the parameters R be time-varying. We note

that, if the network exposure exists and the structural parameters in the matrix β̄ are

constant, the estimation of the reduced-form model over different samples might suggest

changes in the factor exposure. However, those changes are not present but are due to

the misspecification of the network relations. The expected returns are conditional upon

the matrix W . If the network exposure is time-varying, the expected returns, conditional

on Wt, are also time-varying.

A further issue associated with the change in Wt over time is the normalization. In

fact, if we let each single Wt be row normalized, we could reduce the impact of changes

in the network density: an increase in the number of assets linked to asset j would

lead to a decrease in the impact arising from a single asset, since the corresponding

element of Wt would diminish. As a consequence, with the introduction of the dynamic

Wt we also suggest considering a different normalization, which we refer to as a max row

normalization. Formally, a non-normalized WU
t will be normalized as

Wi,j,t = WU
i,j,t

(
maxt

N∑
i=1

WU
i,j,t

)−1
. (36)

We stress that, when conditioning on the network structure, the pricing equation

assumes the following form (in which we have also introduced asset-specific coefficients

for network exposure):
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E [Rt|Wt] = rf + β̄Λ +
∞∑
j=1

(RWt)
j β̄Λ. (37)

The heterogeneity with respect to connections creates reactions to shocks on the common

factors that differ across assets due to the different exposures of assets to the factors, but

also due to the differing impacts of feedback loops coming from the underlying network

structure. The change over time of the matrix Wt, or the presence of a structural break

on the coefficients R (that we might find located close to the time of a crisis or extreme

event), creates abrupt changes in the expected returns, and relevant movements in stock

prices as a consequence. Therefore, the pricing, conditional upon the network structure,

becomes a function of the network structure: if the network changes, the local equilibrium

expected returns change. When we introduce a time variation into the matrices W , or

into the elements R, we must estimate risk premiums in the cross-sectional dimension but

starting from the reduced-form model parameters and accounting for their time variation,

as we will show in Section 5.1. We stress that, if we focus on a standard pricing model,

we neglect the potential time variation in the expected returns.

5 Model Estimation

In the last section we formally introduced the theoretical framework. However, model

parameters must be estimated and this poses various challenges. Let us consider the

simultaneous model equation

ARt = α + β̄Ft + ηt. (38)

Identification conditions are required to estimate the parameters of A, α, β̄ and the

(diagonal) covariance matrix of ηt. The simple order condition of identification requires

that the model parameters must be less than the parameters we can recover from the

reduced-form specification. In fact, the latter can be estimated by least squares methods,
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and the structural parameters can be recovered thanks to their relation to the reduced-

form parameters. The reduced-form model is

Rt = A−1α + A−1β̄Ft + A−1ηt (39)

= α? + β?Ft + ε?t , (40)

suggesting we can consistently estimate K (M + 1) mean parameters plus 1
2
K (K + 1)

covariance parameters, where M is the number of factors and K the number of assets.

However, an unrestricted structural specification, despite having the same number of

parameters in the covariance, has MK +K mean parameters.

The presence of asset interconnections, summarized into a network, allows a sensible

reduction of the number of parameters included in the matrix A. In fact, if we have

asset-specific network exposures and a single network, we have only K parameters in A.

However, this is not sufficient to provide identification of the model’s remaining parame-

ters, since the order condition is still not satisfied. Identification is obtained by imposing

the diagonality of the covariance matrix of ηt. Such a choice, which is economically

motivated, allows the standard order condition for identification to be satisfied.

Nevertheless, further constraints on the model parameters are generally required.

Starting from the spatial econometrics literature, which takes a scalar time-invariant coef-

ficient ρ and a time-invariant row-normalized matrix W , we must impose 1
λmin

< ρ < 1
λmax

,

where λmin and λmax are, respectively, the minimum and maximum eigenvalues ofW . This

constraint ensures the non-singularity of A = I − ρW .

In our framework, we deviate from traditional approaches in several ways. We first

consider the case of a time-varying spatial matrix, that is, Wt. A sufficient condition for

the invertibility of I − ρWt for all t is stated in the following assumption:
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Assumption 5.1. The coefficient ρ satisfies the following condition:

λ̄−1min < ρ < λ̄−1max, (41)

where

λ̄max = min {λt,max}Tt=1 (42)

λ̄min = max {λt,min}Tt=1 (43)

and λt,max and λt,min are, respectively, the minimum and maximum eigenvalues of a matrix

Wt.

If we have a diagonal matrix R containing the asset-specific reaction to the spatial

links, we assume the non-singularity, which is then validated in the estimation step of the

model:

Assumption 5.2. The diagonal coefficient matrix R is such that

I −RWt (44)

is non-singular for each matrix Wt.

Note that the previous assumption covers both the case of a time-invariant and that

of a time-varying spatial matrix. We further note that, when we consider a model with

R, we must impose an additional identification condition:

Assumption 5.3. The diagonal coefficient matrix R = diag (ρ1, ρ2, . . . , ρK) is such that

ρj = 0 if the matrix Wj =
[
W ′
j,1W

′
j,2 . . .W

′
j,T

]
, with Wj,t being the j-th row of Wt, has

non-null rank.

The previous assumption requires, irrespective of the number of matrices Wt, that if

the j-th rows of all the matrices Wt contain only zeros (that is, the asset j is not linked

to any other asset in the varying evolution of the network), then the asset j’s network
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impact coefficient is restricted to zero as it cannot be identified. This condition ensures

that the asset-specific impact on the network links is estimated only if such links exist for

at least one point in time.

The use of covariance restrictions has a consequence for the estimation of the model

parameters. In fact, they must be jointly evaluated, despite the fact that the linear model

structure might allow for single-equation (single-asset) parameter estimation.

Under the two strong parametric restrictions we impose (the structure on A and

the absence of correlation across the idiosyncratic shocks), a viable approach is the Full

Information Maximum Likelihood (FIML) method. However, if K is even moderately

large, the total number of parameters to be estimated in the restricted structural model,

MK, might be quite large. Fortunately, we can follow the approaches commonly used in

spatial econometrics, namely the use of concentrated likelihoods. As in Elhorst (2003),

and LeSage and Pace (2009), we start by writing the full model’s log-likelihood

L (Θ) =
T∑
j=1

lt (Θ) , (45)

lt (Θ) ∝ −1

2
log|Ω| − 1

2
e′tΩ

−1et, (46)

et = Rt − ᾱ−RWRt − β̄Ft, (47)

where Ω is a diagonal matrix. If the parameters in R are known, we can write

Rt −RWRt = Zt = ᾱ + β̄Ft + εt. (48)

Therefore, with a known network exposure parameter matrix R, with a unique (and

even time-variant) network structure, we can estimate the parameters in ᾱ and in β̄ by

least squares methods, obtaining the well-known expressions. In addition, we can even

recover standard estimators for the innovation variance. This suggests that the network

exposure parameters can easily be obtained by maximizing the concentrated likelihood
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obtained by replacing the other parameters with their least squares estimators.13

5.1 Risk premium estimation

We now tackle the crucial issue of risk premium estimation in our framework. The lit-

erature generally follows two approaches, the Fama and French (1993) or the Fama and

McBeth (1973) method. Similarly to Ahern (2013), for the network factors, we follow the

Fama and McBeth (1973) two-pass method. Therefore, we plan to estimate the risk pre-

miums starting from the time-series estimate of the betas and then taking a cross-sectional

regression.

To highlight the links existing between the traditional multifactor model and our

proposal, we first rewrite the two models, the linear factor model and the factor model

augmented with network-driven contemporaneous relations, respectively, reporting the

second in its reduced-form representation:

Rt = α + βFt + εt (49)

Rt = α? + β?Ft + ε?t .

Under the traditional factor model, in which the M factors do have a zero mean, the

Fama-McBeth procedure corresponds to a collection of K time-series regressions of the

form

Ri,t = αi + βiFt + εi,t, (50)

followed by a cross-sectional regression

13This is of relevant computational importance as it allows us to reduce the parameters to be jointly
estimated to 2K if we concentrate the likelihood with respect to ᾱ and β̄, and to K if we also concentrate
with respect to the innovation variance. Standard errors can be recovered from the full-model likelihood
by making numerical evaluations of the Hessian (and of the gradient if we take a robust-parameters
covariance matrix). Note that this approach can be followed even if the spatial matrix W is time-varying,
or with zero restrictions added to specific parameters of R to ensure model identification.
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Re = β̂Λ + ν, (51)

where Re is the K-dimensional vector of the sample averages of excess returns, β̂ is the

K-by-M matrix of (least squares) factor loadings estimates and Λ is the unknown vector

of risk premiums. The estimates suffer from the error-in-variable issue. In the empirical

part we manage the error-in-variable issue by working on industry portfolios. Further, we

introduce the Shanken (1992) correction into the estimation of the standard errors.

We start by focusing on the case with heterogeneous network impact and time-invariant

W . In that case, the risk premiums and the expected asset returns satisfy the following

equilibrium condition:

E [Rt] = rf + β̄Λ +
∞∑
j=1

RjW jβ̄Λ = rf + β?Λ. (52)

Therefore, in our model, the estimation of the risk premium using the Fama-McBeth

approach points at using the reduced-form factor loadings β?. Consequently, we first

estimate the model and then run the cross-sectional regression

R̄e = β̂?Λ + ν?, (53)

where we have replaced the reduced-form betas with their estimates. By simple com-

parison of the two second-stage (cross-sectional) regressions, we can state the following

proposition:

Proposition 5.1. If the true model includes a contemporaneous relation driven by a time-

invariant network with heterogeneous asset impact, the Fama-McBeth approach based on

ordinary least squares (OLS) leads to a consistent estimation of the risk premiums even

if we estimate the factor loadings using the misspecified traditional factor model. In other

words, the OLS estimates of Λ based on β̂ and β̂? do coincide.

Proof. This is a consequence of the fact that, if W is time-invariant, the least squares
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estimator applied to the model in equation (50) provides a consistent estimate of our

model’s reduced-form betas, β?. In other words, β ≡ β?, and thus the risk premiums also

coincide.

Few remarks are then needed. First, the previous result holds in the special case

of scalar network impact. Second, the result holds only for the point estimates of the

risk premiums and only if we estimate the premiums by standard least squares. This

is due to the fact that, under our model, the covariance of ε?t has a known structure

that depends on the network, i.e. the matrix W , and on the parameters included in R.

This covariance differs from the estimated covariance of εt under the multifactor model.

Consequently, inference provides, potentially, different outcomes, that is different standard

errors. Furthermore, if we adopt generalized least squares, even the (small-sample) point

estimates differ.

The previous proposition allows us to highlight that, when the network is time-

invariant, the risk premium estimation is unaffected by the model misspecification. Con-

sequently, our model’s main contributions are as follows: (i) the ability to disentangle the

structural and the network-induced factor exposure; (ii) the possibility of capturing cor-

relation in the residuals of traditional linear factor models; (iii) the possibility of showing

that diversification benefits are weaker than expected.

When the network is dynamic, the expected returns are characterized by

E [Rt|Wt] = rf + β̄Λ +
∞∑
j=1

RjW j
t β̄Λ = rf + β?t Λ. (54)

We first point out that the reduced-form betas are time-varying, being equal to β?t =

(1−RWt)
( − 1)β̄, while we have time-invariant risk premiums.

From the previous expected return relation we have that, under our model with time-

varying networks, the Fama-McBeth approach for risk-premium estimation involves a

second-stage cross-sectional regression in which we still focus on reduced-form betas but

must account for the fact that those betas are time-varying.
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Let us assume that the network changes at a time frequency much lower than that for

the returns data we use for model and risk factor exposure estimation. We thus have a

sample of T observations for returns and N << T networks. Further, let us assume that

the networks change every T/N = m observations. First, we must define sample averages

of excess returns as follows:

Re
i =

1

T/N

t= T
N
i∑

t= T
N
(i−1)+1

(Rt − rf,t) , i = 1, 2, . . . N. (55)

Then, the cross-sectional regression becomes



Re
1

Re
2

...

Re
N


=



β?1

β?2
...

β?N


∆ + ν, (56)

where the time-varying reduced-form betas take exactly N different values.

Two relevant remarks originate from the modified Fama-McBeth procedure, we must

adopt within our model.

Remark 1. If we adopt a misspecified linear factor model, we do not capture the

time change in the betas. This rationalizes, at least in part, the observed time change

in the factor exposures. Moreover, the estimation of risk premiums might differ between

the two models, i.e. the multifactor model and our proposal augmented with network

exposure. Let us assume the following:

A1 the network does not collapse on absorbing states with the absence of connections

or the presence of full connections,

A2 the average returns converge to a long-run value 1
N

∑N
i=1R

e
i →p R

e,

A3 the reduced-form betas converge to a long-run value 1
N

∑N
i=1 β

?
i →p β

?,

A4 the risk premiums are time-invariant,
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where →p denotes convergence in probability.

Under the previous assumptions, the point estimation of the risk premiums under the

classical linear factor model is, again, not affected by the introduction into the model of the

network exposure, and Proposition 5.1 remains valid in the limit. This is a consequence

of the time-invariance of the risk premiums.

Remark 2. The availability of N different cross-sectional collections of reduced-form

betas also allows us to devise a strategy for testing the stability of the risk premiums. In

fact, assuming the correct model specification, we have an estimate of the risk premiums

from the N regressions of the form

Re
i = β?i ∆ + νi, i = 1, 2, . . . N, (57)

where the risk premiums are assumed to be identical. Therefore, testing the equality

of the risk premiums across the N estimates corresponds to a test for the stability of

the risk premiums, under the assumption of stability of the structural factor exposures.

This is feasible if we redefine the N equations in (57) in a seemingly unrelated regression

(SURE) model. In that case, the full model becomes



Re
1

Re
2

...

Re
N


=



β?1 0 . . . 0

0 β?2 . . . 0

...
...

. . .
...

0 0 . . . β?N





∆1

∆2

...

∆N


+ ν, (58)

and it is thus natural to test for the validity of the null hypothesis of equality across the

N risk premiums.14

14Obviously, the SURE model allows for several intermediate specification lying between the case of a
single vector of risk premiums over time and the existence of N different risk premium vectors. Those
various cases can easily be compared to the limiting ones using standard approaches.
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6 Simulation Analysis

To show the capabilities of the proposed framework and to underline the effect due to

model misspecification, that is, neglecting the network links across assets, we include in

this section a set of simulations.

6.1 Scalar network impact

First, we concentrate on the simplest model, with time-invariant W and scalar ρ. Such

a baseline design will provide some expected results, as we will point out in a few lines.

The first data-generating process we consider is a linear factor model with a unique risk

factor, a scalar network impact and a fixed (and known a priori) network matrix W :

(I − ρW ) (Rt − E [Rt]) = β̄Ft + ηt, (59)

with the following specification for parameters, shocks and asset interconnections:

• We consider K = 100 assets, thus focusing on a somewhat large cross-sectional

dimension, and assume we simulate monthly returns.

• The coefficient ρ assumes fixed values ρ ∈ {0, 0.25, 0.5, 0.75}, allowing us to compare

the case of no network impact with different and increasing levels of network impact;

note that, when ρ = 0, our model collapses to the traditional linear factor model.

• The factor loading coefficients are randomly generated from βi ∼ U (0.8, 1.2), i =

1, 2, . . . , K, giving positive factor loadings with an average value of 1.

• We simulate the factor returns from a Gaussian density, Ft ∼ N (µF , σ
2
F ) with

µF = 0 and σF = 15%, on a yearly basis.

• The risky asset’s expected return equals E [Rt] = rf + (I − ρW )−1 βΛ, β being the

K-dimensional vector of betas simulated above, while the factor risk premium equals

5% on a yearly basis, and the risk-free rate is set to 1% on a yearly basis.
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T ρ = 0 ρ = 0.25 ρ = 0.5 ρ = 0.75
Mean Std.dev Mean Std.dev Mean Std.dev Mean Std.dev

Distortions for ρ
200 0.067 0.084 0.062 0.075 0.050 0.058 0.028 0.032
500 0.029 0.040 0.028 0.037 0.024 0.030 0.014 0.017
1000 0.015 0.024 0.014 0.023 0.012 0.019 0.007 0.011

Cross-sectional average of the distortions β
200 -0.072 0.091 -0.088 0.107 -0.096 0.107 -0.119 0.133
500 -0.032 0.043 -0.040 0.053 -0.045 0.061 -0.059 0.072
1000 -0.016 0.026 -0.020 0.032 -0.022 0.034 -0.031 0.045

Table 1: Mean and standard deviation for the distortions ρ and β under a correct model
specification across different values of the network impact and different sample sizes. Values
computed across 500 replications.

• The matrix W comes from a simple and naive design: each of its off-diagonal el-

ements is extracted from a Bernoulli density wi,j ∼ B (pB) with pB = 0.3; the

simulated W is then row-normalized.

• The shocks are extracted from a Gaussian ηt ∼ N (0,Ω), with Ω being a diagonal

matrix with diagonal elements extracted from a uniform, ω
1
2
i,i ∼ U (10%, 25%) with

limits referring to a yearly horizon.

• We simulate 500 sequences of monthly returns with three different sample sizes,

T = 200, 500 and 1000.

The baseline simulation provides expected results. Firstly, the estimators of the co-

efficients ρ and of the (structural) vector β have an asymptotically normal density with

dispersion decreasing with the sample size (see Table 1). Figure 1 reports a kernel estimate

of the distortion ρ̂−ρ across different values of ρ, while Figure 2 provides a kernel density

for the cross-sectional average (over the assets) of the distortions β̂i − βi, i = 1, 2, . . . , K;

all graphs show the plots for the three different sample sizes. We note that the coefficients

converge to the true values and that their dispersion decreases with the sample size, as

expected.

If we estimate a standard linear factor model on the series simulated from equation

(59), that is, we fit
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Figure 1: Distortions of the coefficients ρ under the correctly specified model. True values: (a)
ρ = 0, (b) ρ = 0.25, (c) ρ = 0.5 and (d) ρ = 0.75. Lines refer to different sample sizes, T = 200
thin grey line, T = 500 dashed line and T = 1000 thick black line.
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Figure 2: Cross-sectional average of the distortions for the coefficients β under the correctly
specified model across different values of ρ. True values: (a) ρ = 0, (b) ρ = 0.25, (c) ρ = 0.5
and (d) ρ = 0.75. Lines refer to different sample sizes, T = 200 thin grey line, T = 500 dashed
line and T = 1000 thick black line.
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T ρ = 0 ρ = 0.25 ρ = 0.5 ρ = 0.75
Mean Std.dev Mean Std.dev Mean Std.dev Mean Std.dev

Cross-sectional average of the distortions γ̂1 − β
200 0.000 0.026 0.337 0.027 1.013 0.028 3.033 0.043
500 0.000 0.016 0.337 0.017 1.011 0.018 3.034 0.027
1000 0.000 0.011 0.337 0.012 1.012 0.012 3.035 0.019

Average residual correlations under the misspecified linear factor model
200 0.000 0.003 0.009 0.007 0.034 0.014 0.149 0.035
500 0.000 0.002 0.009 0.007 0.033 0.013 0.149 0.035
1000 0.000 0.001 0.009 0.006 0.033 0.013 0.149 0.035

Average residual correlations under the correctly specified model
200 -0.001 0.004 -0.002 0.003 -0.002 0.003 -0.002 0.003
500 -0.001 0.002 -0.001 0.002 -0.001 0.002 -0.001 0.002
1000 0.000 0.001 0.000 0.001 0.000 0.001 -0.001 0.001

Table 2: Mean and standard deviation for the cross-sectional average of the distortions γ̂1 − β
under model misspecification, upper panel; average residual correlation under model misspeci-
fication, central panel, and under correct model specification, lower panel. Statistics computed
across different values of the network impact and different sample sizes. Values computed across
500 replications.

Rt = γ0 + γ1Ft + εt, (60)

we have that γ0 = E [Rt], γ1 = (I − ρW ) β, and V [εt] = (I − ρW )−1 Ω (I − ρW ′)−1.

Therefore, estimating the linear factor model we estimate the reduced-form representation

of our model with network dependence. The γ1 coefficients, by construction, will be larger

than the structural coefficients β when we simulate from a data-generating process with

positive ρ. This is confirmed by Figure 3 and Table 2 in which we report the kernel

density for the cross-sectional average of γ̂1,i − βi, i = 1, 2, . . . K and some descriptive

statistics. Moreover, the residuals of the linear factor model will be correlated, with

average correlation increasing with ρ (see Table 2).

Figure 3 and Table 2 confirm that, by fitting a linear factor model, we estimate a beta

much larger than the structural value, with distortion increasing with the impact from

the network connections. As a consequence, the value of the true and structural factor

loading might sensibly differ from the one that is empirically observed, being doubled for
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Figure 3: Cross-sectional average of the distortions γ̂1−β under the misspecified model across
different values of ρ for the data-generating process. True values: (a) ρ = 0, (b) ρ = 0.25, (c)
ρ = 0.5 and (d) ρ = 0.75. Lines refer to different sample sizes, T = 200 thin grey line, T = 500
dashed line and T = 1000 thick black line.
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values of ρ equal to 0.5, and thus not particularly elevated.

When analysing the residual correlations, we can see that they are zero when the

linear factor model is correctly specified, that is, when ρ = 0. However, in the presence

of a network impact, the residual correlations start drifting away from zero, their values

increasing with ρ. On the contrary, under the correct model specification, the residual

correlations are almost zero, as expected.

Next, we move to the estimation of the factor risk premium. We adopt the widely

used two-pass regression approach of Black et al. (1972) and Fama and McBeth (1973).

In linear factor models the first stage corresponds to the estimation of the factor loadings,

that is, the betas. Differently, in our model the first stage is the estimation of reduced-

form betas starting from the estimated coefficient ρ and corresponds to a by-product

of the concentrated maximum likelihood estimation approach adopted. We stress that,

under scalar ρ and with a static W , the reduced-form betas and the linear factor model

betas are asymptotically equivalent. The second regression is a cross-sectional one, which

takes as dependent the average risky asset returns and regresses them on the estimated

betas (reduced-form betas in our model). As pointed out by Black et al. (1972), the

estimated risk premium suffers from an error-in-variable problem and is thus inconsistent.

Standard solutions include grouping assets into portfolios, increasing the sample size and

increasing the cross-sectional dimension. We apply the second one, since we are working

in a purely simulated setting in which we do not control for the risky asset’s market value.

As a consequence, we expect distortions in the estimation of the risk premiums for small

sample sizes, and, given the asymptotic equivalence of the betas, no difference between

our model and the misspecified linear factor model. However, an expected result like this

does not impact on the purpose of our simulation design, as our final objective is not

the correct estimation of the risk premiums but rather to highlight the differences in the

estimated risk premiums obtained from either a correctly specified model or a misspecified

linear factor model. We finally point out that the cross-sectional estimation of the risk

premium could come from either a standard OLS or a GLS estimator. For the latter, we
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T ρ = 0 ρ = 0.25 ρ = 0.5 ρ = 0.75
Mean Std.dev Mean Std.dev Mean Std.dev Mean Std.dev

Estimated risk premiums from a linear factor model
200 0.415 0.317 0.417 0.318 0.418 0.318 0.419 0.319
500 0.417 0.198 0.418 0.199 0.418 0.199 0.418 0.199
1000 0.423 0.137 0.423 0.138 0.423 0.138 0.423 0.138

Estimated risk premiums from a correctly specified model
200 0.418 0.322 0.419 0.323 0.420 0.324 0.421 0.325
500 0.418 0.200 0.419 0.200 0.419 0.200 0.419 0.200
1000 0.423 0.138 0.423 0.138 0.424 0.138 0.424 0.138

Table 3: Mean and standard deviation of the estimated risk premiums across the 500 replica-
tions. The cross-sectional regression adopts an OLS estimator. The true risk premium corre-
sponds to 0.4167 at the monthly frequency.

note that the correct model specification allows for a more precise design of the residuals’

covariance (in the reduced-form representation of our model).

In Table 3 we report the estimated risk premiums. As expected, the premiums are

very close to the true value, with a dispersion decreasing in T . The limited distortions

depend on the large sample sizes we consider.15 No difference emerges when we compare

the correctly and incorrectly specified models. Finally, we should point out that the OLS

and GLS estimators provide substantially equivalent results, and thus we report only the

OLS case.

As a further example, we consider the portfolio variance, 1/N , concentrating on the

role played by the idiosyncratic risks. We order assets on the basis of their idiosyncratic

risk and decompose the portfolio idiosyncratic risk into the structural component and the

network effect. We consider portfolios with N varying from 5 to 100. Figure 4 reports the

decomposition in both absolute and relative terms. Notably, network exposure induces a

decrease in the idiosyncratic risks that is much smaller than that associated solely with

the structural risks, and with a relative weight increasing over time. Such a result leads

to diversification benefits that are reduced compared to the ideal case of independent

idiosyncratic shocks (associated with the reduced-form model representation).

To evaluate the impact of the various settings of the data-generating process, we run

15Similar results have been obtained with smaller samples of 60 and 120 observations.
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Figure 4: 1/N portfolio idiosyncratic risk components: structural risk (blue) and network-
related risk (red) across different portfolio sizes using the same assets adopted in the simulations
and with ρ = 0.5. Absolute decomposition (upper) and relative decomposition (lower).
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a number of robustness checks: we simulate the vector β from a Gaussian with mean 1 so

that the betas are more concentrated around the mean but also characterized by a larger

variance; we increase the volatility of the common factor to a yearly value of 25%; we

change the network density by setting pB = 0.15 and pB = 0.45, or, maintaining the same

density, we simulate different networks; we modify the factor risk premium to Λ = 3% or

Λ = 10%; we increase the relevance of the idiosyncratic shocks by sampling elements of

Ω as ω
1
2
i,i ∼ U (20%, 50%).

None of these changes affects the previously reported results.16

6.2 Heterogeneous network impact

The second simulation design we consider adds the heterogeneity to the network impact.

We thus move from the coefficient ρ to the diagonal matrix R. The asset-specific network

impact comes from a normal density, ρi ∼ N (0.5, 0.01), such that with probability close

to 99% ρ takes values between 0.25 and 0.75. In order to control the computational time,

we reduce the cross-sectional dimension for this simulation and set K = 20.

For that case, we provide in Figure 5 a kernel density for the cross-sectional average

of ρ̂i − ρi, i = 1, 2, . . . , K for different sample sizes.

We do not present further results for the estimated factor loadings and residual corre-

lations associated with the fit of the standard linear factor model as they provide the same

evidence as in the first simulation design: the betas are larger than the structural values

and the residuals are correlated. We only point out that, in the presence of heterogeneity

in the network impact, the residual correlations are even higher than in the case of scalar

ρ.17

Instead, we provide in Table 4 further evidence from the risk premium estimation.

Notably, the estimated risk premiums present a slight distortion (overestimation) in re-

lation to the previous simulation design. We link them to the introduction of the asset-

heterogeneous impact of the network, which intuitively amplifies the impact of the error-

16Additional figures and tables are available upon request.
17Additional tables and figures are available upon request.
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Figure 5: Distortions of the cross-sectional average of diag (R) under the correctly specified
model. Lines refer to different sample sizes, T = 200 thin grey line, T = 500 dashed line and
T = 1000 thick black line.
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Misspecified model Correctly specified model
T OLS GLS OLS GLS

Mean Std.dev Mean Std.dev Mean Std.dev Mean Std.dev
200 0.440 0.326 0.440 0.324 0.443 0.331 0.442 0.328
500 0.443 0.201 0.443 0.200 0.444 0.202 0.444 0.201
1000 0.429 0.149 0.429 0.148 0.429 0.149 0.430 0.147

Table 4: Mean and standard deviation of the estimated risk premiums across the 500 replica-
tions. The cross-sectional regression adopts an OLS or GLS estimator. The true risk premium
corresponds to 0.4167 at the monthly frequency.

in-variable problem. Increasing the sample size, the distortions tend to decrease as well as

the dispersion of the estimated risk premiums. There are no differences found between the

two estimation approaches, as in the previous case. Finally, as expected, the correctly and

misspecified models provide comparable results. We stress that this is a consequence of

the data-generating process we follow, in which the risk premium is estimated by looking

at the reduced-form betas. In the current data-generating process, with heterogeneous

network impacts, the linear factor model provides consistent estimates of the reduced-

form betas, but does not allow separation of the network and structural elements that

affect the betas.

For the first design we provided an example associated with the decomposition of the

equally weighted portfolio’s idiosyncratic risk, with weights equal to 1/N , into the stan-

dard component and the network-related component. Here, we repeat the same exercise

with two different R matrices: the first is the one used above, while the second also allows

for the presence of negative ρi coefficients in half of the simulated assets. This second

example allows us to highlight the risk absorption effect of the network exposure. While

for the first case the results are qualitatively similar to those of the scalar ρ case, when

we introduce negative ρi values, and order assets in descending order of their ρi values,

we note that the introduction of assets with negative ρis leads to a moderate decrease of

the interconnection impact on the idiosyncratic risk (the fourth component of the vari-

ance decomposition). Such an effect could even become negative, thus leading to the

absorption of risk by the linked assets, or, in other words, to the amplification of the

48



Figure 6: Fourth component of the equally weighted portfolio variance with weights equal to
1/N - impact of interconnections on idiosyncratic risk. Assets in descending order of ρi values.

diversification benefits. This is evident in Figure 6, where we report the contribution of

the fourth component, the network effect on, the idiosyncratic component to the equally

weighted portfolio variance, with weights equal to 1/N , where the portfolio size increases

from 5 to 100 assets, and assets are ranked in descending order of ρi. The last 50 as-

sets have negative network impacts, and the contribution of the interconnections to the

idiosyncratic risk becomes negative around asset 80.

6.3 Dynamic W and heterogeneous network impact

In the third simulation design, we combine the heterogeneity in the asset network impact

with the time change in the network connections across assets. Now the data-generating

process is

(I −RWt) (Rt − E [Rt]) = β̄Ft + ηt, (61)

Note that, unlike in the previous designs, here the expected returns, conditional on

Wt, are dynamic. To generate a time change in the Wt we chose a simple approach,

starting from the empirical evidence that the links between assets are persistent; that is,
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we do not have networks that are completely different at times t and t + 1. Moreover,

as commented in the previous section, we do not allow for a change in Wt at every t but

rather modify Wt every m = 20 observations.

We change Wt according to the following scheme: at time 1 we sample W1 as in

the first design, that is the off-diagonal elements wi,j ∼ B (pB) with pB = 0.3; every m

observations, each off-diagonal wi,j can take one of only two values, 0 or 1, and is driven

by a Markov chain, with diagonal elements of the transition matrix set as p00 = p11 = 0.9.

Such a choice ensures persistence in the Wt with possibly long-lasting increases/decreases

in the associated network density. Finally, we point out that the Wt matrices have been

normalized with the maximum row normalization.

We now present a number of results obtained from this simulation design. First, we

focus on the coefficients ρi. As in the previous case, Figure 7 reports the kernel density for

the average of diag
(
R̂
)
− diag (R) for different sample sizes. We observe a convergence

(on average) of the concentrated estimates to the true values with increasing sample sizes,

as expected.18

Secondly, we note that, with the data-generating process shown in equation (61), the

linear factor model does not estimate the reduced-form betas as, by construction, they

are time-varying: γ1 6= (I −RWt)
−1 β. Therefore, to evaluate the distance between those

two values, we compute the distortions γ̂1 − (I −RWt)
−1 β and compare them to the

distortions under the correctly specified model
(
I − R̂Wt

)−1
β̂ − (I −RWt)

−1 β; in both

cases, we focus on the cross-sectional averages of the distortions. We collect the results

in Table 5. The table shows that the correctly specified model captures the evolution of

the reduced-form betas which, we recall, are conditional on the knowledge of the network

links. Moreover, the distortions decrease in both mean and dispersion. In contrast, for

the misspecified model the distortions do not clearly converge towards the true values but

seem to be characterized by an average overestimation of the factor impact.

Finally, we move on to the risk premium estimation and report the results in Table

18Detailed tables with coefficient-specific results are available upon request.
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Figure 7: Distortions of the cross-sectional average of diag (R) under the correctly specified
model. Lines refer to different sample sizes, T = 200 thin grey line, T = 500 dashed line and
T = 1000 thick black line.

T Misspecified model Correctly specified model
Mean Std.dev Mean Std.dev

200 0.153 0.008 0.082 0.014
500 0.205 0.003 0.055 0.008
1000 0.194 0.002 0.040 0.006

Table 5: Mean and standard deviation of the cross-sectional averages for the distortions between
the estimated betas under the misspecified linear factor model and the reduced-form betas
induced by the true model (left-side columns), and between estimated and true reduced-form
betas under the correctly specified model (right-side columns).
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Misspecified model Correctly specified model
T OLS GLS OLS GLS

Mean Std.dev Mean Std.dev Mean Std.dev Mean Std.dev
200 0.413 0.316 0.412 0.314 0.417 0.323 0.415 0.355
500 0.417 0.194 0.418 0.193 0.418 0.200 0.415 0.217
1000 0.417 0.146 0.417 0.146 0.419 0.149 0.417 0.157

Table 6: Mean and standard deviation of the estimated risk premiums across the 500 replica-
tions. The cross-sectional regression adopts an OLS or GLS estimator. The true risk premium
corresponds to 0.4167 at the monthly frequency.

6. In this case, the GLS estimator we adopt for the correctly specified model takes

into account the known covariance structure across the reduced-form residuals (and thus

accounts for an impact of the network links in the estimation of the residual covariance).

We first highlight that the OLS and GLS estimates are substantially equivalent. Thus,

there is no effect associated with the estimator adopted. Then, we come to the most

interesting finding: the risk premiums are very close to the true values for both the

correctly and incorrectly specified models, and similarly the risk premium dispersions are

very close together under the two estimated models. Distortions were somewhat expected

but they have been cancelled out by two elements. The first is the introduction of an

averaging across the different matrices Wt. In fact, under the linear factor model we

estimate the betas using the entire sample, which is implicitly affected by the various

networks. The reduced-form model estimators are implicitly averaging across the Wt.

The second element is the pattern characterizing the matrix Wt, which is not exploding.

Nevertheless, this second element plays a minor role. Further simulations with different

dynamics for the Wt, introducing a linear or exponential increase in the network density,

or a level shift in the network density, confirm the finding.19

19Additional results are available upon request.
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7 Conclusions

In this paper we propose a variation of the traditional CAPM in which networks are

used to infer the exogenous/lagged and contemporaneous links across assets. We show

that this approach allows us to decompose the risk of a single asset (or a portfolio) into

four components: (i) the systematic component, (ii) the idiosyncratic component, (iii)

the impact of the asset interconnections on the systematic risk component, that is, the

contribution of network exposure to the systematic risk component, and (iv) the effect

of interconnections on the effect of idiosyncratic risk on the systematic risk component,

that is, the amplification of idiosyncratic risks that generates systematic/non-diversifiable

risk. Our approach also allows us to decompose the risk premium component of returns

into three components: the risk premiums associated with (i) common factor exposures,

(ii) the impact of asset connections on common factors and (iii) the amplification effects

of idiosyncratic risk. The simulation analysis we perform shows that the new model we

propose can be used to better understand the different components of systematic risk and

volatilities and analyse the causes of systematic risk. Moreover, the simulation allows

us to disentangle the error estimation of linear factor models that ignore the presence of

network connections. In particular, we show that the residual correlations start drifting

away from zero if network connectedness is ignored in the model estimation.

This new model is relevant for policy makers and regulators, since they need to be

aware of the implications of the different possible policy choices on network connections

and their effects on equilibrium stock returns and volatilities, as well as for investors and

other market participants, since they need to understand whether and to what degree

network connectivity has an impact on risk premiums, volatilities and spillovers between

markets. The model could be analysed not only through simulations but also using real

data. We plan to work on this in our future research.
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