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Non-Technical Summary

Market liquidity, i.e. the ease of trading, is important to investors, regulators and
issuers of securities in any financial market. Recent concerns are not only about
illiquidity, i.e. the absence of market liquidity, but also about illiquidity risk, i.e.
sudden deteriorations of liquidity. In this paper we study the transmission of illiq-
uidity risk across different assets in the European sovereign bond market.

We focus on the Italian sovereign bond market and use a tick-by-tick dataset of all
quoting and trading activity on Mercato dei Titoli di Stato (MTS) in a time-period
that includes the European Sovereign Debt Crisis, the Quantitative Easing program
of the ECB and the low-yield environment. We extract three different measures of
liquidity based on the cost of trading and willingness of market participants to en-
gage in trading. Based on those measures we compute a liquidity index that can
be extracted for any bond at ultra-high frequency. We analyze the relationship
between the liquidity indices of bonds of different maturities in two ways: i) by re-
lating the variation in the different liquidity indices to each other and ii) by relating
the intensity of sudden deteriotations in different liquidity indices.

Our main findings are that the variation of liquidity is grouped by the maturity,
with very-long term 30 year bonds forming one group and medium and long term
5 and 10 year bonds forming another group, a structure that does not vary over
the period we observe. With the second approach we find that spillover of illiquid-
ity risk, i.e. the likelihood that deteriorations of liquidity spread across different
bonds, is higher when the market is less liquid. During the sovereign bond crisis
this spillover is strongest between bonds of similar maturity, while in 2013 illiq-
uidity risk was strongly originating from the 10 year bonds. In the period around
Quantitative Easing the 10 year bonds are less influential, but from March 2015
the very-long term bonds are both becoming more illiquid and spilling over more
to other maturities.

Concluding, our paper provides a novel approach to quantify illiquidity risk and
spillover of illiquidity risk that can serve as another input for policy makers when
managing the bond yield curve. Targeting the weakest part of the illiquidity chain
could help avoiding contagion of illiquidity and market malfunctioning.
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Abstract

Amid increasing regulation, structural changes of the market and Quan-
titative Easing as well as extremely low yields, concerns about the market
liquidity of the Eurozone sovereign debt markets have been raised. We aim
to quantify illiquidity risks, especially such related to liquidity dry-ups, and
illiquidity spillover across maturities by examining the reaction to illiquidity
shocks at high frequencies in two ways: a) the regular response to shocks us-
ing a variance decomposition and b) the response to shocks in the extremes by
detecting illiquidity shocks and modeling those as multivariate Hawkes pro-
cesses. We find that a) market liquidity is more fragile and less predictable
when an asset is very illiquid and b) the response to shocks in the extremes is
structurally different from the regular response. In 2015 long-term bonds are
less liquid and the medium-term bonds are liquid, although we observe that
in the extremes the medium-term bonds are increasingly driven by illiquidity
spillover from the long-term titles.
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1 Introduction

Market liquidity - the ability to quickly trade large quantities of an asset at a low
cost - is crucial to the functioning of financial markets and therefore of great interest
to both market participants and policymakers. Illiquidity - the absence of market
liquidity - is a threat to investors who rely on accurate quotes and the possibility
to transform their liquid assets into cash, to issuers who see demand wane if their
assets turn illiquid and to regulators who are concerned about the functioning of
markets. Ultimately illiquidity also impedes the efficient allocation of capital and
thus hinders economic growth.

It is therefore concerning that market liquidity has recently come to be seen
as deteriorating in many markets. In his annual letter to shareholders JPMorgan
Chase & Co CEO Jamie Dimon1 warns that “liquidity has gotten worse and we have
seen extreme volatility and distortions in several markets” and “we really need to
be prepared for the effects of illiquidity when we have bad markets.” As reasons he
lists, among others, that there are fewer market makers which hold less inventory,
regulation, structural issues such as high-frequency trading and that only smaller
trade sizes are available.

Adding to the points made by Jamie Dimon, over the last five years the Eurozone
went through the sovereign debt crisis and is currently impacted by the Quantitative
Easing program of the European Central Bank (ECB) and an environment of low
or even negative bond yields. Regulatory constraints are increasing. The proposed
EU banking structural reform2 and the separation of proprietary trading of banks
enshrined therein will likely drive more participants out of the market and lead to
a further reduction in liquidity.

Therefore there is good reason to scrutinize the market liquidity of the secondary
market for European sovereign bonds under these aspects. The best data on the
secondary market comes from Mercato dei Titoli di Stato (MTS), the largest in-
terdealer platform for European sovereign bonds. We use their dataset to study
market liquidity, its reaction and resilience to liquidity shocks as well as spillover
of illiquidity at ultra-high frequency. We focus our analysis on Italy because of
the reliability of the data and the elevated importance of the Italian market to the
Eurozone and look to the 5, 10 and 30 year titles.

One of the most straightforward measures of liquidity is bid-ask spread, i.e. the
price difference between the lowest ask quote and the highest bid offer. Taking
into account only bid-ask spread, the secondary market for Eurozone government
debt appears healthy for medium- and long-term bonds, with spreads for 5 and 10
year titles low and stable and only very long-term 30 year bonds exhibiting higher
spreads, at least partially contradicting the concerns voiced above. We are however
going to make a case that it is necessary to look to several measures of liquidity
as bid-ask spread alone can drastically overestimate liquidity and underestimate
liquidity risk. This is because bid-ask spread can be strongly distorted by a single
quote of potentially only small size when investors seek larger volumes. We therefore
include metrics of spread, price impact and depth across the limit order book when

1Jamie Dimon, annual letter to shareholders of JPMorgan Chase & Co., April 2016.
Available at https://www.jpmorganchase.com/corporate/investor-relations/document/

ar2015-ceolettershareholders.pdf
2See http://www.consilium.europa.eu/en/policies/banking-structural-reform/
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measuring liquidity.
Furthermore concerns are not so much about the level of liquidity but rather illiq-

uidity risk and anxiety about the situation in “bad markets”. Amid such concerns
about regulatory and structural changes as well as about flash events Adrian et al.
study the market liquidity of on-the-run U.S. treasuries in their blog post “Has U.S.
Treasury Market Liquidity Deteriorated?”3 Using spread as well as depth, price im-
pact and other liquidity measures, the evidence they find “is fairly favorable about
the current state of Treasury market liquidity.” However they conclude that “per-
haps the concerns are not so much about average liquidity levels, as we examined, but
about liquidity risk. Indeed the events of October 15 and similar episodes of sharp,
seemingly unexplained price changes in the dollar-euro and German Bund markets
have heightened worry about tail events in which liquidity suddenly evaporates.”

In our analysis we address exactly this concern about illiquidity risks and bad
markets. Specifically “dry-ups” of liquidity are a major threat to the functioning
of financial markets. In a liquidity dry-up of a financial market that is organized
as a limit order book, the book thins out and eventually all standing quotes are
suspended or canceled, leaving an empty book where it is impossible to trade.4

We also address the problem of illiquidity spillover, i.e. the reaction of liquidity to
illiquidity shocks in other assets. If this reaction is sufficiently strong, contagion
effects, where illiquidity spreads across assets, become a risk to the functioning of
the market and can impede diversification effects.

We aim to quantify illiquidity risks and the risk of liquidity dry-ups in two ways:
First we investigate the dynamics in response to a shock under regular conditions
using a VAR model estimated at one-minute frequency, and apply a generalized
variance decomposition to quantify the variation caused by shocks in the same and
in different assets. We are not aware of any other paper that uses the generalized
variance decomposition on liquidity across assets.5

Second to study fragility of market liquidity in extreme events (“in the tail”) we
develop a novel approach where we identify rapid deteriorations of liquidity directly
at very short time scales and model these events using multivariate Hawkes pro-
cesses. From the estimated model parameters we can compute the fraction of events
that are caused by self-excitation from events in the same asset and cross-excitation
from other assets. The higher the fraction of self-excited events, the more likely an
initial liquidity shock to the asset is amplified by exciting further liquidity shocks.
i.e. the asset is prone to illiquidity cascades that can lead to a dry-up of liquidity -
and thus more fragile and less resilient. The fraction of cross-excited events instead
quantifies spillover of illiquidity between different bonds and serves as an indicator
of the lead-lag structure in the arrival of illiquidity shocks between bonds of dif-
ferent maturities. The advantage of this approach is that by the definition of the
events we are observing the tail of the distribution of liquidity changes and, unlike

3Adrian T., M. Fleming, D. Stackman and E. Vogt (2015), “Has U.S. Treasury Market Liquid-
ity Deteriorated?”, available at http://libertystreeteconomics.newyorkfed.org/2015/08/

has-us-treasury-market-liquidity-deteriorated.html
4Liquidity dry-up also refers to the situation when it becomes impossible for an institution to

obtain funding liquidity. While ultimately both cases are related (Brunnermeier and Pedersen
(2009)), in this paper we focus on the case of the breakdown of the limit order book.

5Similar to how Diebold and Yılmaz (2014) study the variance decomposition of volatility
across assets.
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with e.g. correlation, are able to give a directionality to illiquidity spillover.
The regular dynamics reveals a band structure, stable over time, where 5 year

and 10 year bonds group together, distinguished from the very-long term 30 year
bonds and that commonality of liquidity at high-frequencies mainly arises through
the correlated arrival of liquidity shocks.

For the extreme event analysis we find that fragility to such shocks coincides
with illiquidity, i.e. the market is more fragile to illiquidity shocks in periods when
it is less liquid. Across assets of different maturities we do not observe a band
structure as for the regular dynamics but rather a more complex connectedness
that is changing over time and increasing in intensity from 2011 to 2015. While
during the sovereign bond crisis in 2011 illiquidity spillover was block-diagonal, i.e.
strongest between bonds of similar maturities, in 2013 the 10 year titles held a sort
of benchmark status for illiquidity, with illiquidity spilling over more from the 10
year to the 5 and 30 year titles than the other way round. In 2015 instead the 10
year titles loose this leading role and we observe that from March, at the same time
when the implementation of Quantitative Easing commenced, the 30 year titles are
increasingly driving illiquidity in the 10 year bonds.

So how has sovereign bond markets liquidity changed? Liquidity is quite good in
medium- and long-term 5 and 10 year bonds. However the very long-term 30 year
titles have dried up. This is worrisome given that we also observe the same 30 year
bonds to become a driver of illiquidity spillover in bonds of lower maturity. Hence
illiquidity risk in medium- and long-term could be much greater than it seems on
the surface.

The rest of the paper proceeds as follows. Section 2 reviews the related literature
and highlights our contribution. Section 3 describes the structure of the European
sovereign bond market, our data set and the context of the European sovereign
bond crisis and Quantitative Easing. In Section 4 we define the underlying liquidity
measures we use and provide descriptive statistics. Section 5 analyzes the dynamics
of the mean of liquidity and we use these to motivate the discussion of the dynamics
in the tail of the distribution of liquidity in Section 6. In Section 6 we define
illiquidity events and estimate a Hawkes model of their intensity process. We then
apply this approach to our data set and give an interpretation of the results as a
new measure of resilience of liquidity and illiquidity spillover. Section 7 concludes.

2 Related Literature

Our work is related and contributes to various strands of literature on bond markets
and their liquidity, on commonality in liquidity and on Hawkes processes and jump
detection.

Regarding bond markets and bond market liquidity there is a vast literature
that focuses on the US bond market, given its size and the availability of data
bases such as TRACE. Chakravarty and Sarkar (1999) study the determinants of
the realized bid-ask spread in the U.S. corporate, municipal and government bond
markets for the years 1995 to 1997. Goyenko et al. (2011) compare the liquidity and
its determinants of on- and off-the-run treasuries of different maturities. They find
evidence of a flight-to-quality to more liquid short-term bonds during recessions
and that off-the-run liquidity is better forecasted by macro variables. For example
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Dick-Nielsen et al. (2012) study the impact of market liquidity on corporate bond
yield spreads in the context of the US subprime crisis based on quarterly data or
Friewald et al. (2012) use a set of more than 20,000 corporate bonds and several
liquidity measures, finding that liquidity effects are more pronounced in periods of
crisis.
Fleming and Remolona (1999) study the price and volume response of US Treasury
markets to unanticipated news and Pasquariello and Vega (2007) use a parsimoneous
trading model to show that order flow and yield changes are linked to macro news.
Engle et al. (2012) (based on prior work by Engle (2002)) propose a new LOB model
to analyze volatility and liquidity in the context of economic announcements and
the financial crisis period.
Pasquariello and Vega (2012) study the impact of open market operations (POMOs)
by New York FED and find a positive impact on market liquidity. Fleming (2003)
uses high-frequency data to compare different liquidity metrics in the US Treasuries
market and finds that the bid-ask spread is particularly useful.

For the European bond market most studies rely on data provided by MTS. A
notable exception is Linciano et al. (2014) that compares the liquidity of corporate
bonds across three retail platforms.6 Dufour et al. (2004) give a description of the
MTS data set and Cheung et al. (2005) study the microstructure and market order
flow of MTS using trade-to-trade data from January 2001 to May 2002 and find
that the domestic and EuroMTS platforms, despite their technical fragmentation,
are closely connected in terms of liquidity. Caporale and Girardi (2011) confirm this
and find that EuroMTS contributes ca. 20% to price discovery using daily data
from January 2004 to March 2006. In Caporale and Girardi (2013) they extend
this work on price discovery in the light of the restructuring of the regulatory
framework. Dunne et al. (2010) use trade data of the last three quarters of 2005
from the Request-for-Quote platform Bondvision to compare the B2B (interdealer)
segment (MTS) with the B2C (retail) segment (BondVision).7 Coluzzi et al. (2008)
study the liquidity of the Italian secondary market on intraday data from MTS for
the years 2004 to 2006, at different frequencies and comparing a variety of liquidity
measures. They find that there is no clear relationship between trading and LOB
measures.
Dufour and Nguyen (2012) study the permanent price impact of trades, which they
find to be priced as a function of market uncertainty, using data from April 2003
to September 2007 sampled at 10 second intervals. Beber et al. (2009), using data
from April 2003 to December 2004, finds that while yield spread differences are
explained by credit quality, flows into the bond market are chasing liquidity rather
than credit quality.

A considerable number of articles is placed in the context of the European
sovereign bond crisis: Darbha and Dufour (2013b) review the microstructure of the
Euro area government bond market and MTS, comparing also to the US market.
They review liquidity measures with a focus on the bond market, study deter-
minants of liquidity before and after the onset of the sovereign bond crisis using

6Beber and Pagano (2008) study liquidity on one of these platforms, TLX, and discuss this
possible extension.

7Dunne et al. (2006) and Dunne et al. (2006) are also related with a focus on trade-transparancy.
BondVision is part of the MTS Group.
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aggregated monthly data from January 2004 to July 2010 and show the presence
of a term structure in spread. Bai et al. (2012) use data up to May 2012 to con-
clude that the Eurozone sovereign bond crisis is largely driven by credit risk after
late 2009 and not, as initially, by liquidity risk. Along a similar line Darbha and
Dufour (2013a) consider the contribution of liquidity to yield spreads and find that
it becomes an important explanatory factor to yield dynamics after the crisis and
to yield spreads before and after the crisis. Pelizzon et al. (2015) use data from
June 2011 to December 2012 to study the relationship between market liquidity
and credit risk at a daily scale. They find a significant relationship where credit
risk leads liquidity which is enhanced when the CDS spread is above the 500 bp
threshold but relaxed after the LTRO program of ECB.

Second our study relates to the literature on commonality in liquidity. Chor-
dia et al. (2000) introduce commonality in liquidity and correlated movements in
liquidity for equities to the market microstructure literature.8 Brunnermeier and
Pedersen (2009) develop a theoretical model that links assets’ liquidity to the sup-
ply side, i.e. traders’ funding liquidity, explaining not only commonality in liquid-
ity but also liquidity dry-ups and the relation to volatility. Empirical evidence for
this comes from Coughenour and Saad (2004) that incorporate information of the
market-making NYSE specialist into the model of Chordia et al. (2000). Kamara
et al. (2008) and Koch et al. (2009) instead provide evidence of increased common-
ality in liquidity through institutional/mutual funds ownership, i.e. the demand
side. Karolyi et al. (2012) make use of differences in the regulatory framework in
40 countries to disentangle the demand- and supply side sources of commonality in
liquidity and find demand-side forces being more influential. Hameed et al. (2010)
show that stock market declines increase the commonality in liquidity. Brockman
et al. (2009) extend the idea from commonality within markets to commonality
across global stock markets. Lee (2011) argues that both global and local liquidity
risk is priced, depending on the properties of a country’s market. Commonality in
liquidity has been studied also for other markets: Marshall et al. (2013) document
liquidity commonality in commodity futures markets and find no consistent link to
stock market liquidity; Mancini et al. (2013) and Banti et al. (2012) find evidence
of strong commonality in liquidity and that liquidity risk is priced in the FX mar-
ket and Chordia et al. (2005) analyze volatility and liquidity co-movements in the
stock and bond markets. For the bond market Fleming (2003) finds high correlation
of liquidity across US Treasuries and concludes that the liquidity of one security
can serve as a reasonable proxy for the market as a whole. In the European case
Coluzzi et al. (2008) document commonality in liquidity between Italian on-the-run
securities of different maturities.

Furthermore our study is closely linked to the literature on Hawkes processes
and jump detection. It is now established that modeling financial returns requires
a diffusion and a jump component, with important implications for derivatives
pricing, portfolio selection or risk management (Aı̈t-Sahalia (2004)). While our work
is not directly related to jump detection, let us point out that several methods have
been proposed to detect jumps or the presence of jumps, based on high-frequency
returns data, and have been reviewed e.g. in Dumitru and Urga (2012).9 Other

8See also Hasbrouck and Seppi (2001) and Huberman and Halka (2001).
9Similar studies are Theodosiou and Zikes (2011) and Schwert (2009).
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articles have aimed to detect price jumps in the context of economic events, e.g.
Almgren (2012) uses exponential averaging to identify scheduled events that are
economically significant for Eurex interest rate products.10 Hawkes processes are a
class of self-exciting processes introduced by Hawkes (1971a) and Hawkes (1971b)
and initially applied to model earthquake data (Vere-Jones (1970), Ogata (1988),
Vere-Jones (1995)).
They are now widely used in Economics and Finance to describe dis-continuous
processes, often identified as jumps, beyond the jump component of returns. For
a recent review of applications in Finance see Bacry et al. (2015). In Economics
e.g. Aı̈t-Sahalia et al. (2014) model credit default intensities as multi-dimensional
Hawkes processes and derive a link to CDS prices to study the impact of shocks
in the European sovereign CDS market. Aı̈t-Sahalia et al. (2015) use a moment-
based estimation method to capture self- and cross-excitation in the dynamics of
worldwide index returns. In an approach that is somewhat similar to ours, Bormetti
et al. (2015) identify the intraday times of price jumps from data sampled at one-
minute intervals to estimate systemic price cojumps with a Hawkes factor model.

Our contribution is to consider, beyond the dynamics in the mean of the dis-
tribution of liquidity, the dynamics in the tail. First we document commonality in
liquidity across bonds at high intraday frequencies as opposed to daily or weekly
measures and apply the generalized variance decomposition to liquidity. Second we
focus on the tail of the liquidity distribution. By modeling illiquidity shocks as a
self- and cross-exciting process we introduce the notion of resilience of liquidity to
illiquidity shocks and illiquidity spillover or commonality of liquidity in the tails.
Third we are among the first to consider the impact of Quantitative Easing in the
Eurozone on the liquidity of the sovereign bond market.

3 Data and Market Structure

3.1 Structure of the European Sovereign Bond Market

The sovereign bond market of the Eurozone is one of the largest in the world with
e6.8 trillion outstanding nominal value at the end of 2015.11 The secondary market
for European sovereign bonds is divided into an opaque over-the-counter market and
an observable exchange-traded market. The market share of both markets depends
on the issuing country and is not always (publicly) known.

The exchange-traded market is further divided into dealer-to-dealer and dealer-
to-customer platforms and different trading mechanisms of the platforms (e.g. re-
quest for quote (RFQ), limit order book (LOB)) and some of these platforms exist
only for titles of specific European countries. Of these platforms Mercato dei Titoli
di Stato (MTS) is the leading interdealer trading platform for European sovereign
bonds.12 It is organized as an electronic limit order book and minimum quote and
transaction sizes are typically e1 million or larger.

10Both Johnson et al. (2013) and Golub et al. (2012) algorithmically define crash events in the
context of flash crashes.

11Nominal Value of outstanding amounts issued by central governments according to ECB:
https://www.ecb.europa.eu/stats/money/securities/debt/html/index.en.html

12See Pelizzon et al. (2015) and Dufour et al. (2004)
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In our empirical analysis we will focus on the Italian sovereign bond market
for four reasons. First for its size, since Italy is one of the biggest debtors in
the European Union with e1.8 trillion government debt outstanding as of the end
of 2014.13 Beyond its size the Italian market is of even bigger importance as a
pillar of the Euro. During and after the crisis, Italy was repeatedly seen as crucial
to the survival of the Eurozone.14 Third, as we are studying dry-ups of market
liquidity we prefer to do so on a sample where dry-ups occur and thus are more
than just a theoretical risk, as is the case here. Lastly, we place special trust in the
data available. While the MTS dataset comprises all European national markets,
the Italian market stands out as especially liquid. Furthermore we have access to
information that allows us to quantify the market share of MTS and ensure our
data is representative.

Besides historical reasons the role of MTS in the Italian market is elevated in
that it is used by the Italian treasury to evaluate the performance of primary market
participants in terms of liquidity provision.15 Its market share in 2014 was 45.4% of
trading in organized platforms and 18.6% of all trading activities (including OTC)
reported to the Italian securites and exchange commission CONSOB.16 Given the
historical evolution of these figures we are confident to use MTS as a proxy both
for the regulated and the OTC market. Our sample is therefore also an example of
a dominant exchange market functioning in parallel to an over-the-counter market.

3.2 Data Set

Our dataset17 contains all trades and quotes (named “proposals”)18 on the MTS
platform from June 2011 to December 2015 at millisecond or higher resolution.19

The information on trades contains both the requested and executed volume, infor-
mation on quotes includes an identifier enabling us to track participants throughout
the day.20 From the set of proposals we construct the full limit order book (LOB)
at the same resolution of the raw data.

For our empirical analysis we restrict our dataset to three subperiods. The first
subperiod is from June 2011 through February 2012 and contains the “core” of the
sovereign bond crisis. The second subperiod is from March 2013 through December
2013 and was comparatively calm. The third subperiod lasts from October 2014
through June 2015 which includes the period leading up to the announcement of
Quantitative Easing in the Eurozone until the first months of its implementation.
Our motivation for choosing these periods is to span a large period of time over
our dataset, to include both troubled (sovereign bond crisis) and (relatively) calm

13http://www.dt.tesoro.it/en/debito_pubblico/_link_rapidi/debito_pubblico.html
14See e.g. http://www.ft.com/cms/s/0/1ef8289c-baef-11e1-b445-00144feabdc0.html
15See http://www.dt.tesoro.it/en/debito_pubblico/specialisti_titoli_stato/
16CONSOB, Bollettino Statistico Nr. 8, March 2016, available at http://www.consob.it/web/

area-pubblica/bollettino-statistico
17See also Pelizzon et al. (2015) and Dufour et al. (2004)
18Quotes are binding and thus correspond to limit orders.
19From the beginning of 2013 the data has microsecond resolution.
20I.e. each proposal has a unique identifier per bond and day. As changes to a proposal usually

happen as updates to the proposal instead of cancellation and re-issue of a new proposal we are
able to track single participants throughout the day.
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times (2013) and especially to include the Quantitative Easing period to analyze
the resulting effects.

Along the bond dimension we include the three most recently issued 5, 10 and 30
year fixed-rate Italian government bonds (Buoni del Tesoro Poliennale, BTP) that
are actively traded during the whole subperiod, making for a total of nine bonds per
period.21 By focusing on these three maturity bins we capture relatively short-term
5 year bonds that are highly affected by close to zero yields towards the end of our
sample in 2015, the 10 year BTP which is widely used as a benchmark and the very
long-term 30 year bonds which are an indispensable asset to many institutional
investors. In the U.S. treasury market the on-the-run, i.e. the most recently issued
bond of a maturity, enjoys special status and better liquidity than older off-the-run
bonds. This is not the case in Europe22 and performing our analysis on three bonds
per maturity improves our statistics without dispersing too much over different
times to maturity. The list of ISINs is given in Appendix A.

3.3 Timeline

The period that we are considering is characterized by financial distress in the
Eurozone and both fiscal measures of the European Union and various interventions
by the ECB were aimed to contain the effects of the crisis.

The European sovereign debt crisis started in 2009 when concerns surfaced that
peripheral Eurozone member states, especially Greece, would not be able to repay
their debt. Greece was first bailed out in May 2010 and the simultaneous creation
of the European Financial Stability Facility (EFSF)23 by the EU was aimed to con-
tain the crisis. At the same time the Securities Market Program (SMP) by the
ECB conducted “interventions in the euro area public and private debt securities
markets to ensure depth and liquidity in those segments which are dysfunctional”
with the objective to “address the malfunctioning of securities markets and restore
an appropriate monetary policy transmission mechanism”.24 In November 2010 Ire-
land and in May 2011 Portugal required help from the EFSF and by August 2011
fear of a further contagion let Spanish and Italian 10 year bond yields breach 6%
and led the ECB to reactivate the SMP to purchase mostly Spanish and Italian
sovereign debt during the same month.25 Subsequent rating downgrades and in-
ternational concerns mounted pressure on the Italian government under Berlusconi
that was replaced by a technocratic cabinet in November 2011. In December 2011

21Thus our subsample includes the on-the-run bond of each maturity bin at least on the first
day of the subperiod, however if a new on-the-run is issued during the subperiod it is not included
to ensure consistency of the normalization of the PCA measure (see below).

22Coluzzi et al. (2008), see also Section 4.2.
23A special investment vehicle that could provide funding to Eurozone states in financial difficul-

ties with a volume of up to e440 billion. Official press release available at http://www.consilium.
europa.eu/uedocs/cms_data/docs/pressdata/en/ecofin/114324.pdf. Volume enlarged to
e780 billion in July 2011, see http://www.efsf.europa.eu/attachments/faq_en.pdf

24Official press release available at http://www.ecb.europa.eu/press/pr/date/2010/html/

pr100510.en.html. See also Ghysels et al. (2014)
25See Ghysels et al. (2014) and press release http://www.ecb.europa.eu/press/pr/date/

2011/html/pr110807.en.html. The total amount of Italian debt purchased in both rounds of
the SMP amounts to over e100 billion, see http://www.ecb.europa.eu/press/pr/date/2013/

html/pr130221_1.en.html.
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and February 2012 the ECB used their Long Term Refinancing Operation (LTRO)
to infuse credit into the banking system at exceptionally good conditions, which
indirectly lowered yields (Crosignani et al. (2015)). Spain required assistance from
the EFSF in June 2012 but, in the light of significantly lowered interest rates and
the “whatever it takes” speech of ECB president Draghi in July 2012, the situation
subsequently relaxed by mid 2012 to early 2013.

After cutting the deposit interest rate to negative terrain in June 2014, on 22
January 2015 the ECB announced their Quantitative Easing (QE) program under
the name of Public Sector Purchase Program (PSPP) to stimulate the economy in
order to avoid deflation. The PSPP was started in March 2015 with a monthly
volume of e50 billion of purchases of euro area sovereign debt26 adding to purchase
programs of monthly e10 billion for asset backed securities and covered bonds in
place since October 2014. In the QE program the ECB is targeting bonds with a
remaining maturity of 2-30 years, trying to be as market-neutral as possible.27 For
Italy this translates to monthly purchases of sovereign bonds of e7.7 billion.

4 Liquidity

4.1 Liquidity Measures

In general trades on the MTS are rare and trade-based measures of liquidity28 can
only be sensibly defined at daily or lower frequencies. Also, as reported by Coluzzi
et al. (2008), the relationship between limit order book- and trade-based measures
of liquidity is not as clear on MTS. Since we are interested in the dynamics of
liquidity at high frequencies and willingness to trade, we observe liquidity via the
limit order book of executable quotes.

Given that we often observe situations were e.g. the bid-ask spread is determined
by a single set of quotes on the bid and ask side that are significantly removed from
the price levels were liquidity is concentrated and therefore no longer representative
of market liquidity, we do not base our analysis on one liquidity metric alone.29 No-
tably such situations arise especially frequently when the market is illiquid, making
a more complementary approach even more necessary. Therefore we compute three
“raw” metrics of liquidity from the limit order book that correspond to different
facets of liquidity, and then compute a condensed measure of liquidity based on
their principal component. Following the approach of Pelizzon et al. (2014) we use
the following three “raw” measures of liquidity:

• (Bid-Ask) Spread is defined as the best ask minus the best bid price and
captures the (round-trip) cost of small trades.

2612% of which for debt issued by European institutions
27“The intention is to be market-neutral. The Eurosystem wants to create as little distortion as

possible. At the same time, this will not be a strict target and flexibility will be applied, also taking
into account the relative values of bonds and the liquidity of the different maturity segments.”
from https://www.ecb.europa.eu/mopo/implement/omt/html/pspp-qa.en.html. For a sum-
mary see e.g. Claeys et al. (2015)

28Compare e.g. Goyenko et al. (2009)
29See also the discussion in Section 6 and Appendix E.1 for an example where bid-ask spread

is misleading as an indicator of market liquidity.
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• Inverse Depth on the ask (bid) side is defined as how much a buy (sell) trade
of size e15 million would shift the best ask (bid) price at any instant of time.30

To obtain inverse depth we take the mean of the measures on the bid and ask
side. Inverse depth, in the absence of frequent trades, is a measure of (the
virtual or mechanical) price impact.31

• Total (Quoted) Volume is the sum of all the volume quoted in the limit order
book, irrespective of price. As for inverse depth we take the mean of the
bid and ask sides. It is highly correlated (> 95%) with the number of active
proposals and indicates general willingness to participate in the market and
depth of the whole book.

To obtain a condensed measure of illiquidity we perform a principal component
analysis (PCA) for each bond as in Mancini et al. (2013) and Fleming (2003).

The eigenvector corresponding to the first principal component, capturing the
majority of variance in liquidity, has positive eigenvector loadings in the spread
and inverse depth component and negative loading in the total volume component,
thus measuring illiquidity. We construct the time-series of our condensed illiquidity
measure PCA1 at the same time-resolution as our data.32

4.2 Liquidity Statistics

Table 1 presents the summary statistics for the underlying liquidity measures de-
fined in the previous section, distinguished by bond and subperiod. Let us first
comment on the term structure of liquidity. As Darbha and Dufour (2013b) we find
a term structure of liquidity where medium-term 5 year BTPs are more liquid than
long-term 10 year titles which themselves are more liquid than the very long-term
30 year bonds. We do not find systematic differences between the more or less
recently issued bonds of the maturity bins, which is in agreement with previous
literature that does not find an effect from on-the-run status33 on MTS as is the
case for US bonds (Coluzzi et al. (2008)). The table also reveals huge differences in
the levels of liquidity between the periods we consider. During the sovereign bond
crisis in 2011/12 the average spread was ca. 50 basis points, comparing to ca. 10
basis points in 2013 and ca. 12 basis points in 2014/15 for the 10 year BTPs. This
holds similarly for inverse depth where the mean was around 4 basis points during
the sovereign bond crisis, falling to less than 1 basis point in 2013 and slightly larger
than 1 basis point around the onset of QE. The average values of total quoted vol-
ume instead do not differ much between 2011/12 and 2013, they are around e140
million for the 5 year BTPs and slightly more than e130 million for the 10 year

30The amount of e15 million was chosen as the 90% percentile of trade sizes. Inverse depth
thus reflects the cost of a large trade requiring immediacy (Pelizzon et al. (2014)).

31While price impact is typically computed as a regression of price changes on order flow, having
at our disposition the complete limit order book we can also compute the mechanical price response
that would arise to a given trade. This virtual or mechanical price impact is however only one
component of price impact, as the reaction of market participants to trades also plays a role, which
can not be captured in this way.

32I.e. PCA1 can be computed at every update of the limit order book, at millisecond- or higher
resolution. The details of computing PCA1 are described in Appendix B.

33The most recently issued bond of a maturity bin is called the “on-the-run”.
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5 year BTP 10 year BTP 30 year BTP
3 2 1 3 2 1 3 2 1

2011/12

Spread
(in bp)

10%Q 16.0 15.0 12.0 20.0 20.0 11.0 38.0 42.0 33.0
mean 47.8 46.0 42.9 68.9 64.6 48.8 118.4 146.5 120.1

median 33.0 33.0 30.0 50.0 47.0 37.0 94.0 112.0 94.0
90%Q 99.0 91.0 88.0 125.0 120.0 97.0 200.0 238.0 203.0

Inverse
Depth (in
bp)

10%Q 0.5 0.5 0.5 0.5 0.5 0.5 1.0 1.0 1.0
mean 2.7 2.9 3.2 4.1 3.8 4.5 7.1 5.6 5.8

median 1.5 1.5 1.5 2.0 1.5 2.0 3.0 2.5 3.0
90%Q 5.0 5.0 5.5 6.0 6.0 7.5 9.0 8.0 9.5

Total
Quoted
Volume
(in em)

10%Q 102.5 108.0 103.0 88.8 92.0 92.0 67.5 67.5 69.0
mean 144.6 151.3 144.8 130.2 134.9 133.9 90.0 89.9 92.1

median 142.8 153.8 146.5 131.8 137.2 136.5 91.8 92.5 94.5
90%Q 194.5 192.0 187.5 171.5 174.8 172.0 112.0 110.5 114.2

2013

Spread
(in bp)

10%Q 5.0 5.0 5.0 7.0 6.0 7.0 15.0 17.0 16.0
mean 8.4 8.5 8.3 10.3 9.1 10.4 23.4 24.9 23.9

median 8.0 8.0 8.0 10.0 9.0 10.0 22.0 24.0 23.0
90%Q 12.0 12.0 12.0 14.0 12.0 15.0 30.0 31.0 30.0

Inverse
Depth (in
bp)

10%Q 0.0 0.0 0.0 0.0 0.0 0.0 0.5 0.5 0.5
mean 0.5 0.5 0.6 0.7 0.9 0.9 1.5 1.5 1.4

median 0.5 0.5 0.5 0.5 0.5 0.5 1.0 1.0 1.0
90%Q 1.0 1.0 1.5 1.5 1.5 2.0 3.0 2.5 2.5

Total
Quoted
Volume
(in em)

10%Q 118.0 113.0 115.5 114.5 114.0 111.5 88.5 90.5 90.2
mean 142.5 137.8 139.4 135.7 135.8 133.7 106.1 107.8 108.2

median 146.0 140.2 142.5 139.0 139.2 136.5 109.0 110.5 110.5
90%Q 164.0 160.5 160.5 154.2 154.5 153.5 121.5 122.5 124.5

2014/15

Spread
(in bp)

10%Q 4.0 5.0 4.0 6.0 7.0 5.0 25.0 24.0 21.0
mean 11.3 13.1 20.5 11.6 13.3 11.1 56.4 53.5 50.5

median 7.0 8.0 7.0 10.0 12.0 10.0 50.0 46.0 44.0
90%Q 12.0 13.0 13.0 17.0 19.0 16.0 89.0 86.0 82.0

Inverse
Depth (in
bp)

10%Q 0.0 0.0 0.0 0.0 0.0 0.0 1.0 1.0 1.0
mean 0.8 0.8 1.5 1.1 1.1 1.4 3.5 4.3 5.6

median 0.5 0.5 0.5 1.0 0.5 1.0 2.0 2.0 3.0
90%Q 1.0 1.0 1.5 2.0 2.0 2.5 6.5 8.5 11.0

Total
Quoted
Volume
(in em)

10%Q 103.0 100.0 100.0 97.2 92.5 95.5 79.0 78.0 78.0
mean 129.2 125.0 126.1 120.5 116.6 120.4 99.9 100.2 99.1

median 132.5 129.0 130.0 122.5 118.0 122.8 102.0 103.0 102.0
90%Q 153.0 147.0 149.5 143.5 141.5 143.2 118.5 118.5 116.5

Table 1: Summary statistics of spread, inverse depth and total quoted volume.
Spread is defined as the difference of the best bid and ask quotes, inverse depth
as the price shift that would be induced by a trade of size e15 million and total
quoted volume as the summed volume quoted at all levels of the book. 10%Q and
90%Q refer to the 10% and 90% quantile respectively. Statistics from sampling
at one-minute intervals from 9:30 to 17:15 on all days in each sample, unavailable
values are discarded. “5 year BTP 1” is the most recently issed 5y BTP in the
(complete) subperiod; the full list of ISINs is given in Appendix A.

BTPs. These values slightly decrease to around e120 million in 2015. For the very
long-term titles the total quoted volume slightly evolves from ca. e90 million to
around e105 million to e100 million from 2011/12 to 2013 to 2014/15.

Given the eventful times that our sample periods encompass we also show plots
with weekly averages of spread, imbalance in inverse depth, total quoted volume
and PCA1 in Figures 1 to 4 below. The leftmost two facets of each plot correspond
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to the subperiods described in Section 3.2 above. For the right facet that contains
the last subperiod we have extended the descriptive Figures to December 2015 to
reflect also the most recent changes in liquidity, while the subperiod used for our
later analysis ends in June 2015.
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Figure 1: Weekly median of spread in basis points for the most recently issued bond
for each maturity per sample. Rightmost facet extended beyond June 2015.

Figure 1 displays the median spread per week for the most recently issued bond
of each maturity in each of our samples. Spread is fairly constant during the 2013
period (middle facet). While levels of spread in June 2011 were comparable to
those in 2013, we see that spread peaks as the sovereign bond crisis hits Italy in
July/August and November/December 2011. At the beginning of the period that
we consider around Quantitative Easing, bid-ask spreads are as well comparable to
those in 2013, however the spread of the 30 year BTP rises steadily from November
2014 until July 2015 and peaking again in December 2015, while the 5 and 10 year
BTP remain at levels similar to 2013 for most of the period.

For inverse depth we consider the imbalance rather than the level of inverse
depth in Figure 2. We calculate the imbalance of inverse depth as the inverse depth
on the bid side minus inverse depth on the ask side and display the weekly mean. It
is striking that inverse depth was fairly balanced in 2013 with the absolute value of
the imbalance being smaller than the tick size on average (i.e. on average the limit
order book is symmetric at the best). Instead for the sovereign bond crisis period we
observe an asymmetric order book in several weeks for all maturities. For example
the 30 year BTP stands out as heavy on the buy side by three or more basis points
(on the order of magnitude of inverse depth in that period and maturity bin, c.f.
Table 1) for most of December 2011. We do observe comparably large asymmetries
(skewed to the bid and ask side alike) in inverse depth in 2015, especially in the 30
year BTP but also in the 5 and 10 year titles. We thus suspect that the state of
market liquidity in the time of Quantitative Easing is more similar to the sovereign
debt crisis than looking at the bid-ask spread and summary statistics alone suggests.
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Figure 2: Weekly mean of imbalance of inverse depth in basis points for the most
recently issued bond for each maturity per sample. Imbalance is calculated as
the inverse depth on the bid side minus inverse depth on the ask side. Days with
invalid observations were discarded. Negative values mean that virtual price impact
is higher on the ask side and depth is more concentrated at or behind the best price
on the bid side, i.e. there is more willingness to buy. Rightmost facet extended
beyond June 2015.
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Figure 3: Weekly mean of total quoted volume in million e for the most recently
issued bond for each maturity per sample. Days with invalid observations were
discarded. Rightmost facet extended beyond June 2015.

Figure 3 displays the mean of total quoted volume per week for the most recently
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issued bond of each maturity in each of our samples. Total volume for the 5 and 10
year BTPs was highest in June 2011, before the peak of the sovereign bond crisis,
and never returned to this high levels, while for the 30 year BTP the weekly mean
of total volume at the beginning and end of our crisis subperiod is roughly the same
as in the 2013 period and October 2014. As above we observe significant dips in
total volume in July/August and November/December 2011 during the sovereign
bond crisis and a decrease in total volume from November 2014 on for all bonds.
Also during 2013 we observe a dip in July and a peak in August/September. The
peak in total volume in July 2015 originates from one single day with increased
quoted volume on the ask side.
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Figure 4: Weekly mean of PCA1 for the most recently issued bond of each maturity
in each of our samples. Values of PCA1 are not comparable across different periods
or bonds as normalization and loadings can be different. Unit is standard deviations.
Rightmost facet extended beyond June 2015.

Figure 4 shows the weekly mean of PCA1 for the most recently issued bond
of each maturity in each of our samples. Different from spread and total volume,
these values are not comparable across samples or across bonds as the normalization
coefficients are specific to each bond and sample period. We do however observe
the same trends as above: sharp increases in illiquidity in July/August and Novem-
ber/December 2011. During 2013 we observe peaks in illiquidity in March, July
and December. During the 2014/15 subperiod we observe an increase in illiquidity
as well as several local peaks in illiquidity e.g. in mid-January 2015, and we find
this trend for all the maturities. The dip in PCA1 in July 2015 originates from
the single day with increased quoted volume on the ask side. We extend the right-
most facet beyond the sample period used for subsequent computations that ends
in June 2015, using the normalization coefficients and vector loadings obtained in
the sample subperiod. This extension shows an improvement of liquidity towards
October 2015 and a subsequent deterioration afterwards. Throughout the extented
period the liquidity of 30 year title fares worse than the 5 and 10 year BTPs.
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We proceed to quantify below the high correlation of illiquidity that is evident
from the Figure.

4.3 Commonality of Liquidity

Commonality in liquidity is a widely documented phenomenon34 and has been found
also for the data-set we are using (Coluzzi et al. (2008)). However most studies on
commonality in liquidity use low-frequency measures of liquidity35 whereas our focus
is on the inter-dependence of liquidity at high frequencies.

Therefore we compute the daily correlation matrix of (il-)liquidity (PCA1) from
time-series sampled at one-minute intervals. That is, for each day we sample PCA1
at one-minute intervals between 9:30 and 17:15, remove the intraday pattern and
compute the correlation matrix of PCA1 for that day.

30 year BTPs 10 year BTPs 5 year BTPs

30 year BTPs 0.67 0.47 0.42
10 year BTPs 0.47 0.63 0.52
5 year BTPs 0.42 0.52 0.71

Table 2: Average correlation matrix of liquidity (PCA1). Mean over daily correla-
tion matrices from intraday time series from March 2013 through December 2013
and over bonds with same maturity. Time-series were sampled at one-minute in-
tervals and the intraday pattern removed in the underlying liquidity metrics. Days
with invalid observations were discarded.

We find a block-diagonal structure where correlation is the stronger the smaller
the difference in time-to-maturity. This is consistent both across bonds and sub-
periods. In Table 2 we show the average intraday correlation matrix for the 2013
subperiod where we took the average both over all days in the subperiod and bonds
of similar maturity. The more detailed correlation matrices split by bonds and
subperiods are reported in Appendix C.

Let us summarize this section briefly: We consider liquidity via the limit order
book, taking the bid-ask spread, inverse depth as a measure of the shape of the book
near the best and total quoted volume as a our liquidity metrics and constructing
a condensed PCA measure from these. Liquidity is decreasing in maturity, i.e.
30 year BTPs are the most illiquid. Liquidity is correlated across bonds and this
correlation is the stronger, the smaller the difference in maturity between bonds. We
observe several peaks in illiquidity in 2011/12 during the European sovereign bond
crisis, with especially spread increasing dramatically. Over our 2013 period liquidity
remains mostly stable. In 2014/15 we observe a steady increase in illiquidity. This
is especially visible in the spread of the 30 year title but we also observe a decrease
in quoted volume across all maturities.

34See the review in Section 2 and references therein.
35Fleming (2003) and Coluzzi et al. (2008) use weekly observations.

17



5 Reaction to Liquidity Shocks

In this section we analyze the reaction of liquidity in response to liquidity shocks.
A standard technique is to use orthogonalized impulse responses, an approach pi-
oneered by Sims (1980). In this approach the Cholesky decomposition to orthog-
onalize the underlying shocks requires a prior specification of the ordering of the
variables as discussed e.g. in Lütkepohl (1991). Since we cannot make an as-
sumption on the ordering of the liquidity of different bonds, we prefer to use the
generalized variance decomposition proposed by Koop et al. (1996) and Pesaran
and Shin (1998) that is invariant to the ordering of variables in the VAR.36 The
main difference is that instead of considering the variance caused by a shock that is
orthogonal to shocks in prior components, generalized variance decomposition uses
a shock vector that is standardized in one component and contains proportionate
innovations in the other components that correspond to the observed co-variation
structure of innovations.

The H-step generalized variance decomposition dij(H) is defined as the propor-
tion of the H-step ahead forecast error variance of i which is accounted for by the
innovations in j in the VAR model defined in equation (2):

dij(H) =

∑H−1
h=0 (E[xi,t+h|εj,t =

√
σjj,Σ]− E[xi,t+h|Σ])2

E[(xi,t+H − xi,t)2]
. (1)

To forecast xt we assume the following VAR model of liquidity

xt =
L∑
l=1

Φlxt−l + εt (2)

where xt is a N × 1 vector of PCA1 of the N bonds at time t, L is the number of
lags, Φl is the N × N coefficient matrix of the VAR at lag l ∈ {1, ..., L} and εt is
the N × 1 vector of idiosyncratic shocks at time t.

To calculate dij(H) we make the following standard assumptions37 on the VAR
model in equation (2)

1. E[εt] = 0, E[εtε
′
t] = Σ where Σ, is the N × N positive definite covariance

matrix of the idiosyncratic component of the VAR, and E[εtε
′
t′ ] = 0 ∀ t 6= t′.

2. All roots of |1−
∑L

l=1 Φlz
l| = 0 lie outside the unit circle, i.e. xt is covariance-

stationary

We can therefore re-write equation (2) as an infinite MA model:

xt =
∞∑
l=0

Alεt−l (3)

36Generalized Variance Decomposition has been applied e.g. to construct connectedness mea-
sures from daily volatility time-series of US financial institutions (Diebold and Yılmaz (2014)), to
document susceptibility of returns of currency futures to shocks (Elyasiani et al. (2007)), to find
spillover of volatility between ETFs and their component stocks (Krause et al. (2013)) and in the
field of energy economics, see for example Papapetrou (2001).

37See e.g. Lütkepohl (1991) Chapter 2 and Pesaran and Shin (1998)
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with the N ×N coefficient matrices A given through the recursive relations Ai =∑min(L,i)
l=1 ΦlAi−l and A0 = 1. The H-step generalized variance decomposition de-

fined in equation (1) is then given as

dij(H) =
σ−1jj

∑H−1
h=0 (e′iAhΣej)

2∑H−1
h=0 (e′iAhΣA′hei)

(4)

with Σ = E[εtε
′
t] the covariance matrix of the idiosyncratic component of the VAR

and σij = Σij.
In practice we choose L with the AIC under a maximum lag constraint of L ≤ 10

(i.e. 10 minutes) and consider a forecast horizon of 10 minutes (H = 10). We do
not remove the intraday-pattern of liquidity as the result is unaffected.
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Figure 5: Average Generalized Variance Decomposition for a forecast horizon of 10
minutes (H = 10), cross-asset components. Mean of daily estimations per month
and maturity grouping. Time-series sampled at one-minute intervals without re-
moval of the intraday pattern. Days with invalid observations were discarded. The
label “5y to 30y” refers to the variation in 30 year BTPs caused by shocks to 5
year BTPs, the label “30y to 30y” refers to the variation in 30 year BTPs caused
by shocks to different 30 year BTPs.

Figure 5 shows the average generalized variance decomposition for a forecast
horizon of 10 minutes (H = 10). There are three well-separated bands: Shocks on
one 30 year BTP explain ca. 70% of variation in other 30 year BTPs. The second
band is shocks between different 5 and 10 year BTPs. Surprisingly we do not see a
separation between 5 and 10 year BTPs here, i.e. their regular liquidity dynamics
are strongly coupled. The weakest connection is between 30 year and 5 or 10 year
BTPs, with neither a distinction for direction (from/to 30 year BTPs) nor between
the 5 and 10 year BTPs as in the second band.38

38The diagonal elements, i.e. the liquidity variation in one asset as a reaction to shocks in the
same asset, are typically explained to 80− 90%. We report the corresponding figure in Appendix
D.1.
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In the first subperiod we observe two dips in August and November/December
of 2011, while for the 2013 subperiod there is a general increase in dij(H). During
the 2014/2015 period dij(H) is higher than in the two previous periods.

A downside of the generalized variance decomposition is that the contributions
from different shocks are no longer normalized as for the case of orthogonal shocks.
Diebold and Yılmaz (2014) use a row-normalized version of dij(H) to overcome this
and we show our corresponding results in Appendix D.2.

Let us stress that our finding that a high share of variation is explained by
the effect of shocks in other bonds is due to the correlated nature of the shocks.
Specifically they are chosen to represent the empirical structure of shocks: E[εt|εjt =√
σjj] = Σej/

√
σjj and the high values of dij(H) arise from the large cross-correlation

that is present in Σ.39

When instead we construct shocks to purely one component by using only the
diagonal of Σ in the equation (4) above40 the corresponding values of dij(10) where
i 6= j descend to approximately 10% and the band structure vanishes. The corre-
sponding plot is shown in Appendix D.3. We thus deduce that the idiosyncratic
term is the main driver of commonality in liquidity and the band structure that
we observe in this section. This also implies that the majority of the dynamics of
(il-)liquidity happens at time-scales much shorter than our sampling frequency (1
minute). Therefore in the following section we investigate the dynamics in the tail
of the liquidity distribution in a (quasi-)continuous framework.

6 Liquidity Shocks in the Tail and Spillover Ef-

fects

So far we have considered the reaction to illiquidity shocks in the mean and found no
evidence of a significant lead-lag relationship41 but rather that commonality arises
from the contemporaneous correlation in the idiosyncratic shock term.

We now turn our attention to the tail of the distribution of liquidity. This
is of importance since liquidity is crucial especially when it is scarce. Investors,
issuers and regulators alike are worried about so-called “dry-ups” of liquidity when
virtually all quotes disappear from one or both sides of the limit order book and
trading, even at extreme prices, becomes impossible.

When looking in detail to such dry-ups of liquidity we observe that one liquidity
metric by itself is not enough to capture the developments in all of the limit order
book.42 Therefore we use only PCA1 in this section as it unifies all the different
aspects of liquidity and is less susceptible to spurious effects in the underlying
liquidity metrics. The impression is further that often in the run-up to a dry-up

39The results from this section are thus in line especially with the cross-correlation that we
observe in Section 4.3. Note however that Σ is the correlation matrix of the idiosyncratic term εt
in equation (2) whereas in Section 4.3 and Appendix C we show the correlation matrix of liquidity,
i.e. the xt in equation (2).

40Thus also replacing Σ in the numerator of equation (4).
41E.g. the “5y to 30y” component in Figure 5 is of similar size as the “30y to 5y” component.
42E.g. Spread often initially becomes smaller before a dry-up while many participants already

suspend their quotes, thus decreasing the total quoted volume. Therefore spread alone would give
a false impression of liquidity that is not deep. See Appendix E.1 for an example.
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the order book thins out while quotes at the best initially remain stable. When
those quotes at the best are retreating, also other participants are unwilling to be
at the best (and thus most vulnerable to adverse selection if a market order were
to arrive) and remaining participants stepwise widen their quotes when they find
that other participants are acting similarly.43

We take this into account in Section 6.1 below when devising our illiquidity
event detection strategy. Instead of looking for extreme “jumps” we detect smaller
“rushes” to illiquidity. Our idea is then, that a (quick) succession of such illiquidity
events, an “illiquidity cascade” is dangerous and lays the ground for the extreme
event. This is especially so, when the dynamics towards illiquidity is fueled by itself,
i.e. traders or algorithms observing that their peers are disappearing from the book
or widening their spread are inclined to do the same. To capture this aspect of
self-excitation we model the process of illiquidity events as a Hawkes process in
Section 6.2. In Section 6.3 we proceed to interpret these results as two new metrics
of liquidity: resilience and spillover of illiquidity in the tail. The advantages of this
approach are that we can focus specifically on the tail of the liquidity distribution
and gain a directed measure of spillover, allowing us to identify assets which lead
or lag in illiquidity contagion.

6.1 Detection of Illiquidity Events

We detect an illiquidity event, i.e. a shock to liquidity or a “rush” to illiquidity, in
continuous time when there is a large and abrupt decrease in liquidity. Precisely,
an illiquidity event is detected anytime the velocity of increase in illiquidity over a
period of l updates of the limit order book44 is above a given threshold θ.45 The
counting process N i(t) of illiquidity events of bond i at time t is then defined as

N i(t) =

M i(t)∑
m=0

1PCA1i(tm)−PCA1i(tm−l)

tm−tm−l
>θ

(5)

where M i(t) is the number of updates of PCA1i up to time t and tm the physical
time corresponding to update m. In order to model illiquidity events and not limit
order book activity we do not detect illiquidity events when an illiquidity event has
already been detected within l limit order book updates of the possible limit order
book event, or in other words, there need to be at least l limit order book updates
between two illiquidity events. Our approach takes into account both physical and
(limit order book-)event time. The detection algorithm is triggered in limit order
book-time, taking into account the different trading activity in different bonds (e.g.
very long term bonds are less actively traded). The velocity of increase in illiquidity
instead is normalized by physical time elapsed.

43Our observations suggest that there is a structure of confident participants that are willing
to be at the best and following participants that make their quotes relative to other market
participants. This has been confirmed in conversations with market participants.

44We recall that the limit order book is updated instantaneously every time that a participant
enters, changes or suspends/removes a quote.

45We thus do not consider extreme movements towards liquidity as they are more rare and no
threat to the functioning of the market.
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For the application to the data below and in Section 6.3 the lag l is chosen as
the average number of PCA1 updates over 30 seconds and the threshold θ as the

95% percentile of all velocities PCA1i(tm)−PCA1i(tm−l)

tm−tm−l
. In Appendix E.2 we show a

snapshot from the limit order book with detected events as an illustration of the
event detection results.

We detect a mean of ca. 119 illiquidity events per bond and day and a median
of 78. This is roughly consistent across periods and bonds. We report detailed
statistics of illiquidity events and provide a discussion in Appendix F.

6.2 Hawkes Processes

Hawkes processes46 are point processes N i(t) where the intensity λi(t) depends on
the past history of the process. For the process of illiquidity events of asset i the
intensity reads

λi(t) = µi +

∫ t

−∞
Φii(t− s)dN i(s) +

∑
j 6=i

∫ t

−∞
Φij(t− s)dN j(s) (6)

where µi accounts for a constant baseline intensity and Φ(t) is a kernel matrix with
positive elements and spectral norm < 1. The diagonal elements Φii determine
the self-exciting behavior of the process while the off-diagonals Φij, j 6= i describe
cross-excitation from j to i.

The motivation for this parametrization is that we can compute the fraction of
events that is explained by each of these terms as detailed below and attribute them
an economic interpretation.
Firstly, the higher the fraction of events in asset i explained by cross-excitation
from asset j the more likely it is that illiquidity shocks propagate from j to i,
i.e. asset i is more susceptible to shocks in asset j. If instead this fraction is 0
then asset i is perfectly resilient to shocks in asset j and unaffected by any events
in j. We therefore consider the fraction of events explained by cross-excitation a
measure of irresilience or fragility (and therefore illiquidity) of asset i along the
cross-asset dimension. We can in principle construct a bi-directional network where
the strength of the directional connections from j to i is a function of the fraction of
events in asset i explained by cross-excitation from asset j. If the fraction of events
explained by cross-excitation is significantly higher from j to i than from i to j then
asset j is leading asset i in illiquidity and illiquidity shocks tend to spillover from
asset j to i. From a policy perspective it would then make sense to monitor and
target especially the asset that causes the spillover (i.e. j in this example) to avoid
contagion to other assets that are susceptible to its shocks.
Second, a higher fraction of self-excited events in asset i means that past shocks are
more likely to incite more shocks instead of abating. If this fraction is 0 then shocks
in that asset never lead to further shocks in the same asset (and thus arrive either
randomly or from other assets); if instead it is close to 1 then almost any shock has
been stirred up by previous shocks and is also likely to provoke further illiquidity
events, potentially leading to a market liquidity dry-up in a vicious circle. Thus the
fraction of events explained by self-excitation is a measure of irresilience or fragility

46Hawkes (1971a) and Hawkes (1971b)
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and illiquidity along the time dimension.
Lastly, the fraction of events explained by the baseline intensity captures events
that can neither be attributed to self- nor cross-excitation. If this fraction is 1 then
all illiquidity events arrive randomly with constant intensity (thus mathematically
λi(t) = λi describing a Poisson process) and shocks do not propagate, neither from
other assets nor in time. Therefore we interpret the fraction of baseline events as a
measure of resilience and liquidity.

Let us point out here that one should consider the differences rather than the
levels of these fractions informative. As detailed in equation (12) below the fractions
are constrained to add up to 1.47 So the information carried by statements such as
“the fraction of self-excited events this month was 0.5” is that there is no complete
resilience in the time dimension. The news “the fraction of self-excited events
has doubled to 0.5 since last month” in combination with an assessment of the
market behavior of the last month could be a flag for caution depending on the
circumstances not specified in this example.

To parametrize the decay kernel Φ(t) of event excitation in equation (6) above
we choose an exponential kernel

Φij(t− s) =

Pij∑
k=1

αijk exp(−βijk (t− s)) (7)

with a double exponential kernel (Pii = 2) for the self-exciting component and a
single exponential (Pij = 1, i 6= j) for the cross-excitation terms.48

Let us from now on without loss of generality look to pairs of assets, i.e. i, j ∈
{1, 2}. Equation (6) then becomes

λ1(t) = µ1 +

∫
Φ11(t− s)dN1(s) +

∫
Φ12(t− s)dN2(s) (8)

λ2(t) = µ2 +

∫
Φ22(t− s)dN2(s) +

∫
Φ21(t− s)dN1(s) (9)

and by assuming stationarity and taking the mean we get

Λ1 = µ1 + γ11Λ1 + γ12Λ2 (10)

Λ2 = µ2 + γ22Λ2 + γ21Λ1 (11)

where γij =
∫∞
0

Φij(t)dt is the time-integral of the ij component of the kernel,
i.e. for our exponential kernel γij =

∑
P α

P
ij/β

P
ij , and Λi is the average intensity

of process i. Dividing equation (10) by Λ1 gives the respective fractions of events
in process 1 that are explained by the baseline intensity, self- and cross-excitation
respectively:

1 =
µ1

Λ1

+ γ11 + γ12
Λ2

Λ1

(12)

47Furthermore note, as detailed above, that these measures are sample-specific for two normal-
izations we make. First the scaling to construct the PCA-measure is sample- and asset-specific
and second, so is the threshold that is chosen in the event definition.

48We can further interpret the α-terms in equation (7) as capturing fragility (the amplitude of
reaction to an illiquidity shock) whereas the β-terms are related to resilience: the larger β the
quicker the arrival intensity of shocks decays. Our approach combines both of these facets when
we calculate the norm of the kernel below.
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and analogously for process 2.
Empirically we proceed as follows. First we estimate the Hawkes parameters sep-

arately for each estimation period and each pair of bonds via a maximum-likelihood
estimation. In a second step we discard estimations where the estimated Hawkes
process is non-stationary, i.e. has a spectral radius ≥ 1. Third we compute the
stationary intensities Λ1 and Λ2 from equations (10) and (11) and in the last step
we compute the fractions as in equation (12). We interpret and present the results
of this approach in the next section.

Let us point out another possible application of our approach. Given the model
parameters from the estimation (step 1 above) we could carry out an impulse-
response analysis, i.e. calculate the probability or increase in probability of illiq-
uidity events happening in one asset during a response time due to an impulse (or
shock) given as illiquidity events in the same or paired assets.

6.3 Empirical Results

We perform the estimation procedure lined out above for our subset of the three
most recently issued 5, 10 and 30 year fixed-rate Italian government bonds (BTPs),
choosing days as the estimation period.49 In addition in the second step above
we also discard estimations when there are less detected illiquidity events than
estimation parameters (14) in one of the bonds to avoid over-fitting. For every
estimation (i.e. day and pair) we calculate the fraction of illiquidity events of bond
i attributed to cross-excitation, self-excitation from the paired bond j and baseline
intensity.

In Figures 6 through 8 below we display the mean per month and maturity or
pairing of maturities of each of the fraction of events explained by cross-excitation,
self-excitation and the baseline intensity respectively.

Figure 6 shows the average fraction of illiquidity events explained by cross-
excitation, distinguishing by the maturity bin to which the spillover is directed,
i.e. Figure 6a shows spillover to 5 year BTPs, Figure 6b spillover to 10 year BTPs
and Figure 6c spillover to 30 year BTPs from all the three maturity bins. Spillover
within one maturity bin, e.g. 30 year to 30 year, means spillover from different
bonds of the same maturity bins but is different from self-excitation.

A higher fraction of cross-excited events means illiquidity shocks are more likely
to propagate across different maturities so the bonds are more fragile/less resilient
to shocks in other bonds. The fraction of events explained by cross-excitation is
thus a measure of illiquidity and illiquidity spillover or connectedness in the tail of
the liquidity distribution of different bonds.

We are cautious to compare the three subperiods directly, but it does stand
out that in 2014/15 a far higher fraction of events is explained by cross-excitation
than in 2011/12, a rise that already manifests itself in 2013.50 Let us further point
out, that while in 2011/12 a block-diagonal structure, where cross-excitation is
strongest for bonds of the same maturity, is clearly present, this no longer holds

49I.e. the core hours of one trading day from 9:30 to 17:15. We thus avoid the problem of
overnight returns. In principle also shorter estimation periods are possible, as long as there are
enough illiquidity events to estimate the model parameters reliably.

50We also observe a rise in the average number of quote updates per day across samples. We
conjecture that participants might have gone to monitoring liquidity across bonds more closely.
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Figure 6: Average fraction of illiquidity events explained by cross-excitation. A
higher fraction of cross-excited events means illiquidity shocks are more likely
to propagate across different maturities. Mean of daily estimations per month and
maturity pairing, days with non-stationary estimations were discarded. “5y to 30y”
refers to the fraction of illiquidity events in 30 year BTPs explained by events in 5
year BTPs.
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in 2013. Instead in 2013 cross-excitation from 10 year BTPs to 5 year BTPs is
stronger or as strong than between different 5 year BTPs, while cross-excitation
from 10 year to 30 year BTPs is on par with that from 30 year to (different) 30
year BTPs. This does not hold the other way round, i.e. the influence of the 30
year and the 5 year on the 10 year BTP is typically weaker. Therefore we conclude
that in 2013 the 10 year BTPs had a benchmark status in the tail of the liquidity
distribution, with illiquidity shocks spreading via the 10 year titles.

In the last subperiod around Quantitative Easing we still find that the 5 year
titles are strongly influenced by the 10 year BTPs and much more strongly so than
by 30 year titles, however the influence from titles of the same maturity is strongest
here, unlike as in much of 2013. The 10 year BTPs were strongly related to 5 year
titles in late 2014, this however diminishes in 2015 and instead from March 2015
(the month when Quantitative Easing was implemented) illiquidity shocks from the
30 year BTP explain a much higher fraction of such shocks in the 10 year titles. The
very long-term 30 year titles appear very related in the tails to both the 5 and the 10
year BTPs in the beginning of the subperiod, but gradually show less cross-excited
events, a decrease that is strongest for events cross-excited from different maturities,
with a notable decline from February to March 2015. This gives a picture that the
30 year bonds are both becoming more illiquid and spill over more from the 30 year
bonds to other maturities.
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Figure 7: Average fraction of illiquidity events explained by self-excitation. A
higher fraction of self-excited events means illiquidity shocks are more likely to
amplify and propagate in time and market liquidity is more fragile or less resilient
along the time dimension.

Figures 7 and 8 show the average fraction of illiquidity events explained by self-
excitation and baseline events respectively. Since by equation (12) the fractions
must sum up to 1, we decide to analyze these together. A higher fraction of self-
excited events means illiquidity shocks are more likely to amplify and propagate
in time and fragility to illiquidity shocks is higher along the time dimension. The
fraction of self-excited events is thus a measure of illiquidity. The fraction of baseline
events instead measures resilience to liquidity shocks: it is high if many events
arrive just randomly and are not caused by either self- or cross-excitation, thus it
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Figure 8: Average fraction of illiquidity events explained by the baseline intensity.
The fraction of baseline events measures resilience to liquidity shocks.

is a metric of liquidity.
Looking at the 2011/12 subperiod both measures indicate decreased resilience

to illiquidity shocks in July/August and November/December 2011. That is in
agreement with our expectations given that these periods were at the core of the
sovereign bond crisis and liquidity was fragile, with illiquidity metrics rising to
unsustainably large levels in precisely these periods.

In 2013 resilience peaks in July/August, especially for the 30 year BTPs. It
follows a decrease in resilience for the 30 year titles while the 5 and 10 year bonds
become more resilient towards December 2013.

For the Quantitative Easing period we see a peak in resilience in the tails in
December 2014. After a drop in January/February 2015 resilience then increases
until May across maturities and drops steeply in June 2015 for the 5 and 10 year
titles.

Let us repeat that one should be cautious as to what measures can be compared
across periods (or bonds) as we do make a set of normalization choices: first when
computing the PCA and the threshold for illiquidity events and second when we
normalize fractions to sum up to 1. When in doubt we suggest to consider the
differences over time in the context of their respective sample periods rather than
the levels. Having made this disclaimer we do however carefully suggest that the
fractions of events attributed to the different excitation channels are comparable
across assets and periods, precisely because they are normalized to sum to 1.

7 Conclusion

Illiquidity risks and especially dry-ups of liquidity are a major threat to the func-
tioning of financial markets and thus a concern both to investors and regulators.
We propose a new identification and modeling approach to detect when the re-
actions of market participants to illiquidity shocks are susceptible to becoming a
self-enforcing circle that leads to dry-ups of liquidity and a collapsing of the mar-
ket and when there is spillover of illiquidity across assets. This approach gives a
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directional measure of illiquidity spillovers and resilience or fragility to illiquidity
shocks specifically in extreme events that we compare with the regular reaction to
liquidity impulses.

Our analysis is set in the sovereign bond market of the Eurozone from 2011
through 2015, encompassing core parts of the European sovereign debt crisis, the
start of Quantitative Easing by the ECB and most recently the regime of extremely
low bond yields.

We suggest that liquidity is too intricate to be measured by one metric (e.g.
bid-ask spread) alone and use a condensed measure of limit order book liquidity.

As expected we find that market liquidity is more fragile (in extreme events)
and less predictable (in the regular response to liquidity shocks) when an asset is
very illiquid.

While the variance decomposition for the regular dynamics reveals that liquidity
is consistently grouped into medium- and long-term bonds on one side and very
long-term bonds on the other side, in the study of tail events we find that the
market has become more integrated or interconnected in illiquidity since 2011. The
structure of illiquidity spillover has changed from a pure block-structure grouped
by maturity to a more complex dynamics. We observe that for much of 2013 the
10 year BTPs had as strong an effect on the 5 and 30 year BTPs as other bonds
of similar time-to-maturity, that is the 10 year titles assumed a benchmark role as
driver of illiquidity spillover. In 2015 the 10 year titles are less influential, however
we observe that, at the same time when the implementation of Quantitative Easing
starts, the 30 year bonds are both becoming more illiquid and spill over more to
other maturities.

At the same time in the levels we find that, while the 5 and 10 year titles are liq-
uid and stable in 2015, the 30 year titles have turned illiquid, with bid-ask spreads
as high as during the sovereign bond crisis. This is worrisome from a policy perspec-
tive as now liquidity shocks are spreading from the weakest element of the chain.
We conjecture that, among the other possible reasons stated in the introduction,
the illiquidity of the very long-term bonds might be related to the unusually low
yields that prevent profitable market making, while the illiquidity spillover channel
opens as the yield curve flattens and 10 year yields become comparable to 30 year
yields. Thus, when managing the yield curve, policymakers should strive to make
these bonds that drive illiquidity more attractive to avoid contagion of illiquidity
across maturities.
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A List of ISINs

2011/12 2013 2014/15

5 year BTP
3 IT0004615917 IT0004793474 IT0004957574
2 IT0004656275 IT0004820426 IT0004992308
1 IT0004712748 IT0004867070 IT0005030504

10 year BTP
3 IT0004594930 IT0004801541 IT0004953417
2 IT0004634132 IT0004848831 IT0005001547
1 IT0004695075 IT0004898034 IT0005045270

30 year BTP
3 IT0003934657 IT0003934657 IT0004286966
2 IT0004286966 IT0004286966 IT0004532559
1 IT0004532559 IT0004532559 IT0004923998

Table 3: List of bonds used in each subperiod. For each subperiod we include the
three most recently issued 5, 10 and 30 year Italian BTPs that are actively traded
during the whole subperiod. Bonds are ordered in increasing time-to-maturity, e.g.
the bond denoted “5 year 1” is the most recently issed 5y BTP in the (whole)
subperiod.

Table 3 gives the ISINs of the bonds that we use for our analysis. For each
subperiod we include the three most recently issued 5, 10 and 30 year fixed-rate
Italian government bonds (Buoni del Tesoro Poliennale, BTP) that are actively
traded during the whole subperiod. While 5 and 10 year BTPs are frequently
issued and thus change from subperiod to subperiod, there is only one new 30 year
BTP in the 2014/15 period.

B Computation of PCA1

To obtain a condensed measure of illiquidity we perform a principal component
analysis (PCA) for each bond on the “raw” measures spread, inverse depth and
total quoted volume as in Mancini et al. (2013) and Fleming (2003). Let L be the
T × 3 matrix of the demeaned and standardized time-series (T observations) of the
three liquidity metrics above, then the empirical covariance matrix is proportional
to L′L = V ΛV ′ where Λ is the 3 × 3 diagonal matrix of eigenvalues and V the
3× 3 matrix of eigenvectors of L′L.51

The eigenvector corresponding to the first principal component, capturing the
majority of variance in liquidity, has positive eigenvector loadings in the Spread
and Inverse Depth component and negative loading in the Total Volume compo-
nent, thus measuring illiquidity.52 We construct the time-series of our condensed
illiquidity measure PCA1 as PCA1 = Lv1 and therefore we can obtain PCA1 at
the same millisecond or higher time-resolution as our data.

51The ith column of V is the ith eigenvector and denoted vi.
52The eigenvector is uniquely defined up to a sign. We decide to normalize the Spread component

to always be positive, i.e. to measure illiquidity as opposed to liquidity. We calculate the PCA
for each bond and sub-period from the concatenated time-series of intraday liquidity sampled at
one-minute intervals from 9:30 to 17:15. Eigenvectors are similar both across bonds and periods
and robust to different sampling frequencies.
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C Commonality of Liquidity

Tables 4 to 6 show the average intraday correlation matrix of liquidity (PCA1) for
each of our subperiods respectively. That is, for each day we sample PCA1 at one-
minute intervals between 9:30 and 17:15, remove the intraday pattern of liquidity
and compute the correlation matrix of PCA1 for that day. The average intraday
correlation matrix is the mean over all days in the subperiod, where days with
invalid observations are discarded.53

30 year BTP 10 year BTP 5 year BTP
1 2 3 1 2 3 1 2 3

30 year BTP
1 1.00 0.83 0.78 0.46 0.49 0.47 0.43 0.44 0.43
2 0.83 1.00 0.80 0.46 0.48 0.47 0.42 0.43 0.43
3 0.78 0.80 1.00 0.45 0.47 0.46 0.42 0.43 0.42

10 year BTP
1 0.46 0.46 0.45 1.00 0.72 0.71 0.57 0.58 0.56
2 0.49 0.48 0.47 0.72 1.00 0.77 0.59 0.60 0.58
3 0.47 0.47 0.46 0.71 0.77 1.00 0.59 0.60 0.58

5 year BTP
1 0.43 0.42 0.42 0.57 0.59 0.59 1.00 0.76 0.73
2 0.44 0.43 0.43 0.58 0.60 0.60 0.76 1.00 0.76
3 0.43 0.43 0.42 0.56 0.58 0.58 0.73 0.76 1.00

Table 4: Average correlation matrix of liquidity (PCA1). Mean over daily corre-
lation matrices from intraday time series from June 2011 through February 2012.
Time-series were sampled at one-minute intervals and the intraday pattern removed
in the underlying liquidity metrics. Days with invalid observations were discarded.

Table 4 shows the average intraday correlation matrix of liquidity (PCA1) for the
period June 2011 through February 2012. The matrix shows a block-structure, i.e.
correlation is roughly the same for pairs of bonds with similar maturities. Average
correlation is larger than 0.4 even for pairs with the highest difference in maturity
(5 and 30 year BTPs) and the strongest on the diagonal blocks: larger than 0.7
within the 5 and 10 year BTPs and around 0.8 for the 30 year BTPs.

The average intraday correlation during the period March 2013 through Decem-
ber 2013 in Table 5 shows the same structure as the 2011 period. Correlations on
the diagonal block are somewhat lower than in 2011 and similar in the off-diagonals.

Table 6 shows the average intraday correlation matrix of liquidity (PCA1) in the
period October 2014 through June 2015, with the same block-structure. Average
correlation is ca. 0.5 for pairs with the highest difference in maturity and as high
as 0.9 on the diagonal block for the 30 year BTPs.

We observe that correlation and commonality of liquidity in the sovereign bond
market has increased even compared to the peak of the sovereign bond crisis.

53Results are similar when the intraday pattern of liquidity is not removed.

35



30 year BTP 10 year BTP 5 year BTP
1 2 3 1 2 3 1 2 3

30 year BTP
1 1.00 0.79 0.62 0.51 0.52 0.53 0.48 0.45 0.47
2 0.79 1.00 0.61 0.49 0.50 0.51 0.46 0.43 0.44
3 0.62 0.61 1.00 0.38 0.40 0.39 0.35 0.33 0.34

10 year BTP
1 0.51 0.49 0.38 1.00 0.61 0.63 0.54 0.51 0.52
2 0.52 0.50 0.40 0.61 1.00 0.65 0.53 0.50 0.51
3 0.53 0.51 0.39 0.63 0.65 1.00 0.55 0.53 0.53

5 year BTP
1 0.48 0.46 0.35 0.54 0.53 0.55 1.00 0.70 0.72
2 0.45 0.43 0.33 0.51 0.50 0.53 0.70 1.00 0.70
3 0.47 0.44 0.34 0.52 0.51 0.53 0.72 0.70 1.00

Table 5: Average correlation matrix of liquidity (PCA1). Mean over daily correla-
tion matrices from intraday time series from March 2013 through December 2013.
Time-series were sampled at one-minute intervals and the intraday pattern removed
in the underlying liquidity metrics. Days with invalid observations were discarded.

30 year BTP 10 year BTP 5 year BTP
1 2 3 1 2 3 1 2 3

30 year BTP
1 1.00 0.90 0.91 0.59 0.61 0.61 0.49 0.49 0.51
2 0.90 1.00 0.92 0.60 0.61 0.61 0.49 0.49 0.51
3 0.91 0.92 1.00 0.60 0.61 0.61 0.49 0.49 0.51

10 year BTP
1 0.59 0.60 0.60 1.00 0.80 0.78 0.55 0.54 0.57
2 0.61 0.61 0.61 0.80 1.00 0.83 0.57 0.57 0.58
3 0.61 0.61 0.61 0.78 0.83 1.00 0.57 0.56 0.58

5 year BTP
1 0.49 0.49 0.49 0.55 0.57 0.57 1.00 0.73 0.74
2 0.49 0.49 0.49 0.54 0.57 0.56 0.73 1.00 0.73
3 0.51 0.51 0.51 0.57 0.58 0.58 0.74 0.73 1.00

Table 6: Average correlation matrix of liquidity (PCA1). Mean over daily cor-
relation matrices from intraday time series from October 2014 through June 2015.
Time-series were sampled at one-minute intervals and the intraday pattern removed
in the raw liquidity metrics. Days with invalid observations were discarded.

D Generalized Variance Decomposition

D.1 Diagonal component of Generalized Variance Decom-
position

Figure 9 shows the average generalized variance decomposition for a forecast horizon
of 10 minutes (H = 10), showing only the elements where variation and shock
occurred in the same asset. The diagonal elements, i.e. the liquidity variation
in one asset as a reaction to shocks in the same asset, are typically explained to
80 − 90%, generally a higher value than the cross-asset values reported in Section
5.
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Figure 9: Average Generalized Variance Decomposition for a forecast horizon of
10 minutes (H = 10), same-asset components. Mean of daily estimations per
month and maturity grouping. Time-series sampled at one-minute intervals without
removal of the intraday pattern. Days with invalid observations were discarded. The
label “30y self” refers to the variation in 30 year BTPs caused by shocks to the same
30 year BTP.

D.2 Normalized Generalized Variance Decomposition

A downside of the generalized variance decomposition is that the contributions
from different shocks are no longer normalized as for the case of orthogonal shocks.
Diebold and Yılmaz (2014) therefore choose to row-normalize the components of

dij(H) such that each row sums to 1, i.e. d̃ij(H) =
dij(H)∑N
j=1 dij(H)

. For robustness we

also show the corresponding result in Figure 10. We do observe the same band
structure as described above. Since rows are normalized what we observed as dips
in August and November/December 2011 in Figure 5 now manifests as peaks of the
autoregressive component (e.g. “30y self”).

D.3 Generalized Variance Decomposition with independent
shocks

In the generalized variance decomposition a high share of variation is explained by
the effect of shocks in other bonds because of the strong correlation of these shocks.
Here we replace Σ in equation (4) with its diagonal, setting the off-diagonal elements
of Σ to 0, with all other parameters equal.

As we can see in Figure 11 the corresponding values of dij(10), i 6= j descend
to approximately 10% and the band structure vanishes. We thus deduce that the
correlation in the idiosyncratic term is the main driver of commonality in liquidity
and the band structure that we observe in Section 5. This implies that the majority
of the dynamics of liquidity happens at time-scales much shorter than our sampling
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Figure 10: Average Generalized Variance Decomposition for a forecast horizon of
10 minutes (H = 10), using the row-normalization of Diebold and Yılmaz (2014).
Mean of daily estimations per month and maturity grouping. Time-series sampled
at one-minute intervals without removal of the intraday pattern. Days with invalid
observations were discarded. The label “30y self” refers to the autoregressive com-
ponent in the liquidity of 30 year BTPs while the label “5y to 30y” refers to the
variation in 30 year BTPs caused by shocks to 5 year BTPs.
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Figure 11: Average Generalized Variance Decomposition for a forecast horizon of 10
minutes (H = 10), using uncorrelated shocks, i.e. replacing Σ in equation (4) with
its diagonal. Mean of daily estimations per month and maturity grouping. Time-
series sampled at one-minute intervals without removal of the intraday pattern.
Days with invalid observations were discarded. The label “30y self” refers to the
autoregressive component in the liquidity of 30 year BTPs while the label “5y to
30y” refers to the variation in 30 year BTPs caused by shocks to 5 year BTPs.
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frequency (1 minute).

E Snapshots of the Limit Order Book

E.1 Dry-Up of Market Liquidity
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Figure 12: Limit Order Book snapshot with an example of liquidity drying up.
Colored horizontal lines correspond to different quotes, each color corresponding
to a quote from a different participant. The mid price (black horizontail lines)
separates the bid and ask side. No trades in this bond were reported during the
period displayed.

Figure 12 shows as an example a snapshot of the limit order book of the 10
year on-the-run BTP from 19 July 2011 where the spread widens considerably
and most participants retreat from participating in the market.54 At 14:53 spread
is reasonably small55 and both sides of the order book are densely populated with
quotes, most of them within a few ticks of the best. From around 14:53:30 the order
book thins out and participants retreat, while the spread initially gets smaller due
to single quotes lowering the ask price (thus increasing inverse depth). Shortly after
14:54 only a handful of participants are left quoting and the bid-ask spread widens
to more than 300 basis points. Spread eventually returns to more normal values at
14:57 but the depth of the limit order book remains stricken.

First, we observe that one liquidity metric by itself is not enough to capture the
dynamics. Spread initially becomes smaller while many participants suspend their

54We are not aware of any news announcements at that time, however Italian markets were
clearly in distress about hitting the 6% yield threshold.

55I.e. within the average of the period considered, ca. 50 basis points corresponding to e0.5
(per e100 face value) for the 10 year BTP in 2011/12, c.f. Table 1
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quotes, thus decreasing the total quoted volume. Therefore we use only PCA1 in
this section as it captures all these aspects of liquidity.

Second, Figure 12 reveals that liquidity does not “jump” if looking at differ-
ent metrics combined (and at sufficiently high observation frequency), but rather
“rushes” towards illiquidity in a succession of small but fast steps. This is sensible
since from the microscopic point of view liquidity is composed of the quotes from
a set of market participants. In fact we observe that there is a grouping of partici-
pants into some that are “confident” in posting their quotes whereas the larger part
is merely “following” by e.g. pegging their orders one tick size behind the best or
posting very conservative quotes.56

E.2 Illiquidity events detected
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Figure 13: Limit Order Book snapshot with detected illiquidity events (dashed
vertical red lines). Colored horizontal lines correspond to different quotes, each
color corresponding to a quote from a different participant. The mid price (black
horizontail lines) separates the bid and ask side. No trades in this bond were
reported during the period displayed.

Figure 13 shows an excerpt of the limit order book where the detected illiquidity
events are marked by the dashed vertical red lines. Note that an event does not
necessarily correspond to a widening of the spread (e.g. the event at ca. 13:52) but
could also be caused by the cancellation of proposals deeper in the LOB and the
resulting deterioration of the total quoted volume or inverse depth.
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all
5 year BTP 10 year BTP 30 year BTP

3 2 1 3 2 1 3 2 1

2011/12

10%Q 25.0 20.0 22.0 23.4 28.0 25.0 29.4 28.4 28.4 26.0
mean 101.3 96.3 88.2 88.8 104.9 101.3 111.0 106.3 101.3 113.3

median 69.0 57.0 56.0 61.0 72.0 71.0 87.0 81.0 74.0 78.0
90%Q 210.0 203.8 168.0 187.4 198.6 207.6 213.4 219.0 228.4 239.0

2013

10%Q 35.0 38.0 33.0 35.0 31.0 31.0 41.0 28.0 38.0 35.0
mean 137.7 116.3 111.8 121.5 157.8 152.9 148.1 151.8 134.6 145.0

median 101.0 98.0 88.0 93.0 105.0 101.0 113.0 113.0 99.0 114.0
90%Q 295.0 216.0 225.0 250.0 341.0 375.0 318.0 329.0 295.0 299.0

2014/15

10%Q 23.0 26.5 28.0 26.0 20.0 19.5 16.5 25.5 19.0 22.0
mean 116.3 89.8 109.7 95.8 121.8 123.2 125.6 114.5 132.2 134.0

median 66.0 62.0 71.5 70.0 67.0 61.0 60.0 74.0 62.5 60.0
90%Q 262.0 167.5 211.0 173.0 302.0 323.5 280.0 245.5 344.0 399.5

all

10%Q 26.0 26.0 26.0 26.1 26.0 25.0 26.0 27.1 26.0 25.0
mean 119.0 101.4 103.3 102.6 129.1 126.6 128.8 125.1 122.9 131.1

median 78.0 69.0 72.0 73.0 82.0 75.5 89.0 86.5 83.0 82.0
90%Q 254.0 199.0 206.9 205.7 293.9 307.7 267.0 282.1 268.7 278.9

Table 7: Summary statistics of the number of illiquidity events detected per bond
and day. 10%Q and 90%Q refer to the 10% and 90% percentile respectively. Bonds
are ordered in increasing time-to-maturity, e.g. the bond denoted “5 year 1” is the
most recently issed 5y BTP in the (complete) subperiod.

F Statistics of Illiquidity events

Table 7 displays the summary statistics of the number of illiquidity events detected
per bond and day, broken down both by subperiod and bond. The mean number
of illiquidity events per bond and day is 119.0 (in the 2011/12 subperiod slightly
lower with 101.3 and slightly higher in the 2013 period with 137.7) and the median
is 78 (slightly lower in 2011/12 and 2014/15 with 69 and 66 events per bond and
day respectively and higher in 2013 with 101 events per bond and day). Comparing
across maturities, 5 year BTPs get a mean (median) of ca. 102 (71) illiquidity
events per bond and day, whereas 10 and 30 year see a few more, ca. 128 (82) and
126 (84) respectively.

These differences can at least partially be explained considering the assump-
tions we made for the illiquidity event detection scheme. Concerning the differ-
ences across periods, the threshold is chosen as the 95% percentile of all velocities
PCA1i(tm)−PCA1i(tm−l)

tm−tm−l
whereas for illiquidity events there is the restriction that two

illiquidity events need to be at least l limit-order-book updates apart. So if poten-
tial illiquidity events are happening shortly after each other, some of them will be
discarded due to this restriction. This effect is the stronger the more potential illiq-
uidity events are clustered in time and this explains why there are more illiquidity
events in the rather calm 2013 period. Concerning the difference across maturities,
in choosing l as the average number of limit-order-book updates over a certain time
frame, we had assumed that limit-order-book updates scale linearly. If however in
the rather actively traded 5 year BTPs trading activity scales up less than for the
less active 10 and 30 year BTPs, the effective l is larger for the 5 year titles and

56This has been confirmed in conversations with market participants.
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using the same argument as above we would have less detected illiquidity events
there.

Finally Table 7 hints that the distribution of jumps is skewed towards large
values, which we confirm in Figure 14.
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Figure 14: Density plot of the number of illiquidity events detected per bond and
day, distinguished by subperiod (a) and maturity (b).

Figure 14 shows the density plot of the number of illiquidity events detected per
bond and day, distinguished by subperiod (a) and maturity (b). As alluded above
the distribution is skewed towards larger numbers of events. Beyond the somewhat
higher number of events in 2013 mentioned abobe, the distribution is consistent
across both periods and maturities.
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