
 





ON THE APPLICABILITY OF MAXIMUM LIKELIHOOD

METHODS: FROM EXPERIMENTAL TO FINANCIAL DATA
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Abstract. This paper addresses whether and to what extent econometric

methods used in experimental studies can be adapted and applied to financial
data to detect the best-fitting preference model. To address the research ques-

tion, we implement a frequently used nonlinear probit model in the style of

Hey and Orme (1994) and base our analysis on a simulation study. In detail,
we simulate trading sequences for a set of utility models and try to identify

the underlying utility model and its parameterization used to generate these

sequences by maximum likelihood. We find that for a very broad classification
of utility models, this method provides acceptable outcomes. Yet, a closer

look at the preference parameters reveals several caveats that come along with
typical issues attached to financial data, and that some of these issues seems

to drive our results. In particular, deviations are attributable to effects stem-

ming from multicollinearity and coherent under-identification problems, where
some of these detrimental effects can be captured up to a certain degree by

adjusting the error term specification. Furthermore, additional uncertainty

stemming from changing market parameter estimates affects the precision of
our estimates for risk preferences and cannot be simply remedied by using a

higher standard deviation of the error term or a different assumption regarding

its stochastic process. Particularly, if the variance of the error term becomes
large, we detect a tendency to identify prospect theory as utility model provid-

ing the best fit to simulated trading sequences. We also find that a frequent

issue, namely serial correlation of the residuals, does not seem to be an im-
portant issue. However, we detected a tendency to prefer nesting models over

nested utility models, which is particularly prevalent if rank-dependent utility
and exponential power utility models are estimated along with expected utility

with constant relative risk aversion utility models.
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Experimental Econometrics for Finance—Analysis of a Likelihood Approach

1. Introduction

Microeconomic modeling of investor financial decision making and its results de-
pend on the mathematical shape of the underlying preference function as well as
its parameterization. The majority of such models rely on expected utility, first
established in the seminal von Neumann and Morgenstern (1947). Due to the
shortcomings of the expected utility theory in conciliating empirical evidence and
theoretical predictions, researchers have set forth alternative and generalized utility
concepts, such as rank-dependent utility (Quiggin (1982)), prospect theory as con-
ceptualized by Kahneman and Tversky (1979) and cumulative prospect theory as a
refinement of the former (posed in Tversky and Kahneman (1992)) to improve the
descriptive accuracy of these models. This raises the question: Which assumption
about the proposed utility specification is valid to properly characterize risk pref-
erences in financial markets? Solutions for how to identify the best-fitting utility
model in controlled experimental environments are proposed by, for example, Hey
and Orme (1994) and Laury and Holt (2005). However, to the best of our knowl-
edge, no study considers a comparable endeavor for behavior in financial markets.
Financial data, in contrast to experimental data, have certain characteristics, but
also come with significant disadvantages, which might require some modifications
of the methods adopted from experimental economics. In particular, such data
comprise revealed rather than stated preferences (Train (2009)), offer a consider-
able sample size but might suffer from unobservable factors beyond the control of
the researcher, first-order autocorrelation in the time series as well as between un-
observable factors, under-identification problems regarding the utility models and
a certain degree of multicollinearity (Campbell et al. (1997)), and introduction of
additional uncertainty stemming from the way investors tend to extrapolate past
returns into the future (Andreassen and Kraus (1990)) and carry over accumulated
gains and losses over time.

We assess the compatibility of both econometric concepts from the experimental
literature, namely, customized maximum likelihood methods, based on modeling
an additional error term on top of the individuals decision rule as introduced by
Hey and Orme (1994), and the effects of selected features of financial data, particu-
larly the trading behavior from individual investors. We then identify and analyze
potential problems that arise when using trade data such as multicollinearity, the
effects of additional uncertainty regarding the stochastic properties of the likelihood
function, autocorrelation, and the identifiability of the true but unknown functional
shape of an investor’s utility function. These problems can be generated via the
way investors obtain estimates to approximate uncertain financial outcomes (Kah-
neman and Tversky (1973), Andreassen and Kraus (1990)) and by carrying forward
accrued returns over time.

This paper proceeds as follows. We outline the research question and provide an
overview of the current relevant experimental literature to frame the topic in the
second section. In the third section, we sketch a frequently applied likelihood ap-
proach for utility model identification and present the inherent statistical properties
that can be expected to hold in experimental data. This allows us to identify and
highlight several weak points in the widely applied likelihood approach with regard
to financial data and to show from which factors potential problems may arise. In
Section 4, we focus on the problems identified in a preliminary likelihood analysis of
the results from application of the maximum likelihood method from a simulation
study. We then present and discuss each of these problems in detail, particularly
how our results can be affected from a model selection procedure. In this section,
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we analyze in more detail the factors suspected to alter the surface of the likelihood
function, to yield unreliable estimators for risk preference parameters, and to cause
breakdowns in certain numerical search algorithms, thus affecting model selection
results. We elaborate to what extent the above-mentioned effects arise and alter
the results of the utility model identification strategy.

Our findings confirm that the additional uncertainty that yields a modification
of the stochastics of the likelihood function, introduced by the unknown stochas-
tic process stemming from carrying forward intermediate gains and losses, multi-
collinearity, and under-identification interferes with the precision of our estimators
and thus the identification of the underlying utility model. Autocorrelation, on the
other hand, appears to predominantly affect selection of the error term specifica-
tion. However, if the error term specification interacts with model selection in a
way that, by coincidence, captures part of the effects of the additional uncertainty
and of multicollinearity, estimation of the variance of the error term, an additional
nuisance parameter, can supplement and enhance identification of the correct util-
ity model specification.

2. Preferences in financial markets and experiments

Empirical and theoretical research in finance places great emphasis on the math-
ematical specification of the utility function of an individual decision maker, usually
concluding that most individuals are indeed risk averse, despite the fact that notable
exceptions exist.1 Findings from experimental and empirical studies paint a multi-
faceted picture in this matter, as they are based on various methods and data sets,
and thus they are difficult to compare directly and yield results that are virtually
impossible to reconcile. Despite apparent consensus about the general relevance of
risk aversion in the theory of financial decision making, the exact characterization
of an investor’s utility function is a highly disputed topic. For example, regarding
the classical expected utility paradigm, such studies as Friend and Blume (1975),
Blume and Friend (1975), Schlarbaum et al. (1975), Morin and Suarez (1983) and
Landskroner (1988) find evidence for decreasing absolute risk aversion (DARA) and
constant relative risk aversion (CRRA), and estimate the coefficient for relative risk
aversion to be approximately 2 or higher; this is incompatible with the assertions
of logarithmic utility (Latane (1959), Hakansson (1971) and Markowitz (1976)), a
conjecture supported by recent empirical studies based on household survey data.2

In contrast to this strand of the literature, experimental evidence outside the
field of finance is vast and finds somewhat lower values, with ambiguous results.
For example, Gordon et al. (1972), Kroll et al. (1988) and Levy (1994), who analyze
study participant decision making in a portfolio choice context, show evidence for
DARA and moderate support for either increasing relative risk aversion (IRRA)
or CRRA, although other authors object that IRRA might be an artifact of the
inherent positive-or-zero gain feature of such experiments (Levy (1994)), and that
absolute risk aversion cannot be unambiguously recovered from actual choices (Wolf
and Pohlman (1983)).

1Friedman and Savage (1948), Markowitz (1952), Tversky and Kahneman (1992) and Kahne-
man and Tversky (1979).

2Although Brunnermeier and Nagel (2008) conclude that logarithmic utility may provide an

appropriate description of financial market risk aversion, Guiso and Paiella (2008) and Chiappori
and Paiella (2011) detect signs of DARA and CRRA with (highly dispersed) coefficients of relative

risk aversion above 2 for a significant proportion of households.
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Although it appears that DARA and CRRA utility dominates financial markets,
classical utility theories have been questioned due to their incompatibility with
empirical phenomena, such as the observed equity premium3, and on the observed
violation of their inherent axiomatic properties (Allais (1953), see also Edwards
(1996), Barberis and Thaler (2003), Glaser et al. (2004), Shefrin (2008), Wang
(2006), Broihanne et al. (2008), the recent Wakker (2010) and Barberis (2013)).
To address the latter issue, early experimental studies such as Preston and Baratta
(1948), Edwards (1953), and Edwards (1954) reveal that decision makers system-
atically violate the independence axiom of von Neumann and Morgenstern (1947),
thus concluding that subjects decide in discord with physical probabilities and seem
to apply decision weights to making choices. These findings prompted development
of generalized expected utility theories, such as Dual Theory (Yaari (1987)), and
creation of rank-dependent utility (RDU) as advocated by Edwards (1962), Kar-
markar (1978), Karmarkar (1979), Quiggin (1982) and Wakker (1994), whereas
another strand of the literature proposes modifications of the utility function it-
self (e.g., Friedman and Savage (1948), Markowitz (1952), Kahneman and Tversky
(1979), Wakker and Tversky (1993)). According to these generalized expected util-
ity models, risk aversion is now not only determined by the curvature of the utility
function, but is also dependent on the shape of the decision weight attached to
the alternatives of the choice set. Despite the fact that increasing marginal utility
causes a degree of discomfort for economists (Yaari (1965)), recent empirical and
experimental evidence provides further support for these alternative utility models
(e.g., Hakansson (1970), Hershey and Schoemaker (1980), Tversky and Kahneman
(1991), Tversky and Kahneman (1992), Rabin (2000), Rabin and Thaler (2001),
Levy and Post (2005), Wakker (2010)), although these concepts are not beyond
criticism (Levy and Levy (2002b), see also Wakker (2003)).

Empirical studies that address whether alternative utility theories, particularly
both versions of prospect theory (in which risk aversion is now captured by three
different parameters) are effective and present in financial markets predominantly
focus on selected features, such as the effects of reference points and loss aversion on
financial decision making—features thought to be connected to individual investor
trading behavior. For purposes of illustration, the pioneering Shefrin and Statman
(1985) establishes a possible link between prospect theory and observed financial
decisions, namely, the disposition effect, by basing its reasoning on these afore-
mentioned characteristics, although this link has been questioned recently (e.g.,
Barberis and Xiong (2009), Linnainmaa (2010), Vlcek and Hens (2011) and Bar-
beris (2012)).4 Other studies focus on the interdependence between prospect theory
and options exercise behavior (Heath et al. (1999), Poteshman and Serbin (2003)),

3For a critique on empirical findings for risk aversion based on their inconsistency with the

equity premium, see Mehra and Prescott (1985), Mankiw and Zeldes (1991), Benartzi and Thaler

(1995), Blake (1996), Kocherlakota (1996), Goetzman and Ibbotson (2005) and Mehra (2008)
4If individual preferences follow the predictions of prospect theory, phenomena such as the

disposition effect should be observable in other environments. In fact, evidence for the dispo-
sition effect has been found among individual investors in the stock market (Schlarbaum et al.

(1978), Ferris et al. (1988), Odean (1998), Weber and Camerer (1998), Odean (1998), Odean

(1999), Garvey and Murphy (2004), Jordan and Diltz (2004), Lehenkari and Perttunen (2004),
Frazzini (2006), Dhar and Zhu (2006)) and other environments, such as in the financial advice

of stock brokers (Shapira and Venezia (2001)), the behavior of futures trades (Heisler (1994),
Frino et al. (2004), Coval and Shumway (2005), as well as Locke and Mann (2005)), IPO trading
volume (Kaustia (2004)), real estate markets (Genesove and Mayer (2001)), insurance contracts

(i.e.Schoemaker and Kunreuther (1979), Camerer and Kunreuther (1989)), and observed risk be-
havior in laboratory environments for stocks (Weber and Camerer (1998), Oehler et al. (2003),
Lee et al. (2008)) and monetary endowments (see Chui (2001)).
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behavior of futures traders in real markets (Locke and Mann (2000), Locke and
Mann (2005) and Coval and Shumway (2005)), and experiments (Haigh and List
(2005); see also Harrison and Rutstrom (2009), who argue that these effects may
also be consistent with constant absolute risk aversion (CARA) under variable risk
aversion), as well as observed behavior in real estate markets (e.g., Genesove and
Mayer (2001)).

In light of such preponderant, partly contradictory empirical evidence regarding
the mathematical nature of individual investor preferences, comparison of utility
functions is an ongoing topic in the experimental literature, as documented by
Lattimore et al. (1992), Hey and Orme (1994) and Abdellaoui (2000). A major
breakthrough in the quest to find underlying preferences is Hey and Orme (1994),
who assess various parametric utility functions at the level of individual subjects us-
ing specific customized maximum likelihood procedures (Orme (1995)).5 Maximum
likelihood methods in general capture the idea that individuals err in their deci-
sion making, a presumption that is not explicitly recognized in previous methods
of preference estimation (e.g., as in McCord and DeNeufville (1986), Currim and
Sarin (1989) and others). These maximum likelihood methods have been enhanced
and widely applied, generating a large number of studies addressing the best-fitting
utility model, which predominantly find evidence favoring prospect theory models.6

However, these results are criticized for their artificial setting concerning the payoff
structure (Laury and Holt (2005)), as well as the way in which relevant information
is presented (Kahneman and Tversky (1973)). Naturally, the question arises as to
whether these well-established methods can be adapted and applied to financial
data, assuming the decision process and data structure are similar to that obtained
in the laboratory setting. In the next section, we present the frequently applied
maximum likelihood approach for utility model selection in detail and elaborate on
the econometric peculiarities that accompany financial data.

3. An econometric model of financial decision-making

Characterizing risk preferences of individual investors in financial markets typi-
cally involves extensive individual-level analysis, if one refrains from applying mixed
models to capture the heterogeneity in preferences in the manner considered to be

5In contrast to the abundance of experimental evidence, studies directly addressing the best-

fitting utility function in financial markets are surprisingly scarce. A notable exception is Black-
burn and Ukhov (2006), who applies a modified pricing kernel approach from Jackwerth (2000)

at the level of individual stocks to draw conclusions on the underlying utility function from the
direction of the sign of the estimated pricing kernels. Blackburn and Ukhov find evidence for

utility functions similar to those proposed by Friedman and Savage (1948), Markowitz (1952) and

Kahneman and Tversky (1979), where classical utility functions, such as CRRA, prevail only in 3
out of 41 cases.

6For instance, Blondel (2002) fits linear, power, and exponential forms of utility to experimental
data. This author finds strong evidence in favor of the power and the exponential function. In the

same vein, Stott (2006) also find a best fit for power and exponential functions, while quadratic and
linear specifications perform poorly. A further comparison between the first two functional forms
shows, in line with Blondel (2002), that power specifications fit even better to the experimental
data. Results from further experiments, in which maximum likelihood methods are applied, are

mostly consistent with an inverse S -shaped probability weighting function (Wu and Gonzalez
(1996), Wu and Gonzalez (1999), Abdellaoui (2000), Bleichrodt and Pinto (2000), Abdellaoui

et al. (2005)); moreover, they are consistent with a concave value function in the domain of gains,
corresponding to prospect theory, which is also backed in recent studies that address the best-
fitting functional form (see, e.g., Wakker (2008)). The properties of diminishing sensitivity toward
variations in areas of gains are further confirmed in Wakker and Deneffe (1996), Fox and Tversky

(1998) and Fennema and van Assen (1999), whereas evidence of risk-seeking in the realm of losses
is shown by Fishburn and Kochenberger (1979).
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effective to unravel the respective utility functions and their parameterizations (e.g.,
Hey and Orme (1994), Laury and Holt (2005)). For this reason, the emphasis of
empirical and experimental studies, particularly in the context of finance and asset
markets, has shifted away from aggregated views that describe investors as a unified
whole, usually modeled as a representative investor (Duffie (2001), Back (2012) or
Munk (2013)), to disaggregated models in which the analysis is conducted on an
individual level (for an early reference see Hensher and Johnson (1981)). In compar-
ison to aggregate data, information on individual decisions is usually characterized
by infrequent and discrete observations, by greater variation in each factor and less
covariation among these factors (due to aggregation procedures), through summing
the individual observations (Train (1986)).7 A variety of econometric methods have
been developed to address apparent discreteness, such as discrete choice models
(Amemiya (1975), McFadden (1980), Amemiya (1981), Amemiya (1985)), popular-
ized by Ben-Akiva and Lerman (1985), Train (1986), Train (2009) and advanced
for estimation of nonlinear arguments, such as utility functions in a customized
maximum likelihood model (Harrison and Rutstrom (2008) and de Palma et al.
(2008)) as proposed by Hey and Orme (1994).

To test the effectiveness of such a likelihood-based model selection procedure, it
is necessary to identify common and distinctive features in the design of labora-
tory and financial market environments. Experimental studies on utility functions,
which apply such discrete choice models for preference measurement by customizing
an underlying likelihood function, usually are similar in multiple aspects regarding
underlying assumptions on the decision process. Narrow framing is one central
assumption, as it allows definition of a finite and exhaustive set of alternatives via
two mutually exclusive options, satisfying the requirements for a discrete choice set
(Train (1986), Train (2009)) such that discrete choice models are applicable.8 To
define the set of choice options, it is commonly assumed that, for each investment
decision of an individual investor, the respective choice set is spanned by a risky
asset and an investment in an assumed riskless money market account in place
of a representative riskless asset, yielding a gross return of Rf,t. Given the usual
lottery-type design, the price of the risky asset, essentially any stock traded by
the investor over the respective period, is assumed to be subject to a stochastic
binomial process (Cox et al. (1979) and Rendleman and Bartter (1979), also Hull
and White (1988)) in which two distinct states S of the world can be identified,
yielding a gross return of RS,t.

9

7This is important, because the precision of estimation generally increases with sample size and
variance of the variables entering the model, and decreases with its covariance. Further, standard

econometric tools, such as regression analysis, implicitly assume a set of continuous variables– an
assumption appropriate for aggregated models but that seems to be problematic when underlying
factors on an individual investor level are the focus of interest.

8Empirical finance studies indicate that investors allocate different streams of income, such as
dividends and cash flows resulting from corporate actions and other stocks (Shefrin and Statman
(1984), Baker and Wurgler (2004)), to different mental accounts (Thaler (1985)). Further, the

tendency to evaluate risky lotteries separately, known as narrow framing (Barberis and Huang
(2001), Barberis et al. (2001), Barberis et al. (2001), Berkelaar et al. (2004), Gomes (2005),

Barberis and Huang (2009)) is in line with Shefrin and Statman (1985), complementing recent
studies on individual investors that examine trading decisions for each stock separately (see Odean

(1998), Odean (1999), Barber and Odean (2000), Barberis and Huang (2001), Grinblatt and
Keloharju (2001a), Grinblatt and Keloharju (2001b), Barber and Odean (2002), Dhar and Kumar
(2002), Hong and Kumar (2002), Zhu (2002), Grinblatt and Han (2005), Lim (2006), Frazzini
(2006), Barber and Odean (2008)).

9In the upside state U , associated with some unknown physical probability pt > 0, indicated
by an index t for time, the stock price rises and yields an upside return RU,t > 1, whereas in the
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The expected payoffs and accrued returns of the risky asset constitute a central,
distinctive feature between, on the one hand, financial markets, in which parameter-
ization of the underlying return distribution is unknown and intermediate (paper)
gains and losses are followed up, and, on the other hand, experiments, in which
gains and losses are not carried forward to the next lottery task to avoid strategic
hedging behavior and where payoffs of the lotteries are clearly presented to the
study participant. There is ample evidence showing that investors in financial mar-
kets experience difficulty in recognizing and learning the true but unknown market
parameterizations, especially if they vary over time (Ehm et al. (2012)). To ap-
proximate financial payoffs, investors form their expectations on the outcomes of
the risky asset by applying several mental shortcuts. DeBondt (1993) mentions
that investors may consider recent past returns to be representative in formulating
their expectations about the future to approximate financial payoffs (Kahneman
and Tversky (1973), for evidence from stock markets see Andreassen (1987), An-
dreassen (1988) and Andreassen and Kraus (1990)). Considering that this mental
pattern transforms the payoffs RS,t into expected profits extrapolated from the past
over some lookback period, it generates an implicit correlation of these values as
time proceeds and beliefs on market parameters are updated in each t.10

Studies on empirical dynamic programming suggest that individual investors face
computational difficulties in determining the optimal trading strategy (see Eckstein
and Wolpin (1989), Rust (1994) and Adda and Cooper (2003) for surveys). Ac-
cording to these studies, investor behavior is more likely reconcilable with a discrete
decision process (Rust (1992)), which is found to be reflected in the stock market
(Thaler et al. (1997) and Gneezy and Potters (1997), see also Normandin and
St-Amour (2008)).11 To formalize the decision process, the utility an individual
investor obtains from a money market account is denoted as Vk(Wt, Rf,t|θk) for
utility model k, whereas the utility resulting from the risky asset is given the ex-
pression Vk(Wt, RS,t|θk) with S ∈ {U ;D}. This allows introduction of a parameter
set θk to represent the utility-specific parameters of utility model-type k, which in
turn, due to the discretionary (myopic) decision process, leads to the behavioral
assumption that the investor invests a positive amount in the risky asset if

Vk(Wt, RS,t|θk) ≥ Vk(Wt, Rf,t|θk) (3.1)

holds (see for this approach, e.g., Currim and Sarin (1989)). Discrete choice mod-
els as in Train (1986), Rust (1994) and Train (2009) are constructed around the
assumption that only a minority of attributes that drive purchase and selling de-
cisions in financial markets are observable. Consequently, the utility function has

downside state D with corresponding probability 1−pt, the stock declines, generating a downside

return 0 ≤ RD,t < 1.
10In doing so, we distinguish from representativeness bias, in which investors base their judg-

ments on stereotypes and seek out patterns in returns or prices (Weber and Camerer (1998),

Shefrin (2008)). The intuition here is that, due to extrapolation bias with short horizons, in-
vestors may buy stocks whose prices have recently increased, especially when following a myopic

trading strategy, which contradicts mean reversion expectation (Zuchel (2001)). This is backed
in empirical studies e.g., Grinblatt and Keloharju (2000) and Kaustia (2010). These authors find
that Finnish investors bought past winners and sold past losers, thus revealing a trend-following

trading strategy, which is not consistent with an expectation of mean-reverting stock prices (see
also Kaniel et al. (2008)). Dhar and Kumar (2002) investigate price trends of stocks bought by

more than 62,000 households using discount brokerages, and conclude that investors prefer to buy

stocks that have recently enjoyed an abnormal positive return.
11Further, under generalized utility concepts, dynamic programming with nonlinear decision

weights can generate suboptimal and time-inconsistent results, as shown by Machina (1989) for

non-expected utility in general, Nielssen and Jaffray (2004) for rank-dependent utility RDU and
Barberis (2012) and Ebert and Strack (2012) for cumulative prospect theory CPT , respectively.
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the additively separable decomposition

Vk(Wt, RS,t|θk) = Uk(Wt, RS,t|θk) + ε, (3.2)

which, combined with (3.1), implies that the investor holds the stock if the differ-
ence in utilities, abbreviated as ∆t(Uk|θk), is positive. There are two main purposes
of the stochastic component ε: first the error term should fully capture hidden fac-
tors that affect the observed variations in the attractiveness of the respective stock
without the necessity to explicitly model other (potentially unobservable) variables
or data imperfections (Cramer (1986), also Rust (1994)). Second, without adding
the error term ε to ∆t(Uk|θk), the lack of error in behavior yields imprecise esti-
mates for θk. To illustrate the latter argument, consider the case of an investor
whose decision is based exclusively on ∆t(Uk|θ̂k). While for each set of θk there
exists a unique optimal decision for the investor, the converse is not true. For any
set of optimal decisions reflected in the trading sequence of this investor, there ex-
ists a set of parameters consistent with those decisions. In terms of the likelihood
function, if no error term is added to ∆t(Uk|θ̂k), then for any parameter set θk,
the observations are either consistent with the utility model or not. If they are not
consistent with the utility model under consideration, the likelihood is zero and
logL(∆t(Uk|θ̂k)) is (theoretically) −∞. However, if the observations are in accord

with the utility model, then the likelihood is 1 and logL(∆t(Uk|θ̂k)) is zero. As a

consequence, logL(∆t(Uk|θ̂k)) oscillates between zero and −∞. Therefore, model-
ing and estimation of an individuals trading behavior should contain an additional
element ε. Note that, based on the predictability of Rf,t and the fact that the
utility of the risk-free investment carries no uncertainty per se, ε stemming from
the risk-free asset is assumed to be zero.12

To obtain the maximum likelihood function, conditional choice probabilities are
derived given the stochastic properties of the error term, which is frequently as-
sumed to be normally distributed (Hey and Orme (1994) and Carbone and Hey

(2000)) as ε ∼ N(0, σ2
ε ) with density according to φ(ε) = (2πσ2

ε )−
1
2 e−

1
2 (ε/σε)

2

.
Derivation of the conditional choice probabilities requires defining an index Ik,t :=
I[∆t(Uk|θk) + ε ≥ 0], taking the value 1 if the condition in the brackets is met
and zero otherwise.13 The resulting choice probabilities are usually denoted as
Φ (∆t(Uk|θk)/σε), where by the finiteness of the choice set, the probability of in-
vesting in the riskless asset is 1− Φ (∆t(Uk|θk)/σε) = Φ (−∆t(Uk|θk)/σε). In this
case, Φ denotes the cumulative normal density function, but it may be substituted
by any other distribution, such as the lognormal (as in Booij et al. (2009)) or lo-
gistic distribution (Harrison and Rutstrom (2008), Train (2009)). The term σ2

ε

denotes the (heteroscedastic) variance of the error term on a daily basis, estimated
as a nuisance parameter (Pawitan (2001)) along with θk to absorb potential effects
resulting from the lagged structure of the estimated market parameters within

12This is a minor technicality, as it avoids the necessity to evaluate all elements of the covariance

matrix of errors (see Train (2009)). Further note that by assuming hedonic framing, the covariance
in errors among stocks traded in a portfolio can be ignored.

13The probability (Rust (1994)) of buying or holding the risky asset is thus given as

p(∆t(Uk|θk) ≥ 0) = p(I[∆t(Uk|θk) + ε ≥ 0] = 1)

=

∫ ∞
−∞

I[∆t(Uk|θk) + ε ≥ 0]φ(ε)dε

=

∫ ∆t(Uk|θk)

σε

−∞
φ(ε)dε,

satisfying the conditions if ∆t(Uk|θk) → ∞, the choice probability converges to unity and ap-

proaches zero if ∆t(Uk|θk)→ −∞.
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∆t(Uk|θk) (Dhrymes (1971), Cramer (1986)) and of its error terms.14 Combining
the normal distribution of the error term with the binary choice feature of the
discrete choice setting leads to a likelihood function logL(∆t(Uk|θk)) similar to a
nonlinear in arguments probit model (see Thurstone (1927), case V, for an early
reference from the field of psychometrics and Marschak (1960) for a transition in
terms of utility).15 Experimental and empirical studies, which commonly apply
likelihood methods to identify utility functions, implicitly use the convenient prop-
erties of maximum likelihood estimators (such as the frequently cited Jullien and
Salanie (2000)), whereupon maximizing logL(∆t(Uk|θk)) for each of the Kk ele-

ments of θk and σε provides estimators θ̂k|n,t for a given sample size, indicated by
the number of stocks n and trading days t, which are consistent, asymptotically
efficient, and moreover, asymptotically normally distributed.16

To identify the best-fitting underlying utility function of type k, insights from
likelihood theory provide the key to selecting the utility model that best explains
the observed data. According to Fisher (1922) and Kullback (1968), the maximized

likelihood function logL(∆t(Uk|θ̂k)) contains information for each utility model k
on the relative fit of this model to observed data. To distinguish the k utility
models from one another, classical likelihood theory suggests that the utility model
with the highest maximized likelihood logL(∆t(Uk|θ̂k)) best fits the observed data
(Kullback (1968), Akaike (1973), Schwarz (1978), Amemiya (1980), Pawitan (2001)

and Burnham and Anderson (2004)). However, note that logL(∆t(Uk|θ̂k)) does

14In addition, the economic intention of the heteroscedasticity feature of the error term ε allows

us to disintegrate factors with varying impact, dependent on whether the decision at hand is a

purchase or a sale, thus agreeing with Odean (1999), Glaser and Weber (2007) and Statman et al.
(2006), whereupon purchase decisions may be motivated by factors other than sell decisions. For

example, overconfident investors may suffer from biased beliefs about the anticipated returns they

expect to generate by trading stocks even if these investors had average performance in the past
(Odean (1999), Barber and Odean (1999) and Glaser and Weber (2007)), as such investors are

induced to buy stocks more readily.
15The overall likelihood function of an investor of utility type k can accordingly be ex-

pressed as logL(∆t(Uk|θk)) =
∑
t∈T

∑
I∈Ik,t Ik,t log pIk,t (∆t(Uk|θk)) in which pIk,t (∆t(Uk|θk))

denotes the respective conditional probabilities as defined above. Given the binary choice
assumption, the log-likelihood function can be explicitly written as logL(∆t(Uk|θk)) =∑
t∈T log

([
Φ
(

∆t(Uk|θk)
σε

)]Ik,t [
Φ
(
−∆t(Uk|θk)

σε

)]1−Ik,t)
in which we omit constant combina-

torial terms, since they add no further information about θk. An alternative expression, which
explicitly recognizes the dichotomy of Ik,t, is obtained if the log-likelihood function is decomposed

as logL(∆t(Uk|θk)) =
∑

1 log Φ
(

∆t(Uk|θk)
σε

)
+
∑

0 log Φ
(
−∆t(Uk|θk)

σε

)
, which immediately car-

ries over to the notation of the score vector and the Hessian matrix. Expressing the log-likelihood

function this way is helpful in organizing the computations but cumbersome if one wishes to derive
the information matrix such that the notation used in this paper appears to be more convenient,

although it seems complex at first sight.
16In the appendix, we provide further details concerning these properties of the maximum

likelihood methodology in the context of utility models for the interested reader. Concerning these

estimators, given that certain regularity conditions of logL(∆t(Uk|θk)) hold, Lehmann (1983)

elaborates that θ̂k|n,t has certain convenient properties, that is, its estimators cannot be located

on a boundary without violating the regularity of the likelihood function. Further, the information
matrix is bounded and positive, and thus satisfies the characteristics of a variance measure given

that a second-order Taylor expansion of logL(∆t(Uk|θk)) is sufficient and valid. Experimental
design can ensure that the presupposition according to which the single likelihood functions are
indeed independent (e.g., Post et al. (2008) and others), is maintained, and consequently the

asymptotic features of θ̂k|n,t are preserved. For instance, current studies on preferences in game

shows allow for carrying forward gains and losses (Post et al. (2008)) in a way that preserves

the likelihood properties but that may require simulation methods to establish the empirical
distribution function upon which the likelihood approach is constructed.
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not necessarily have to be exactly zero for the perfectly fitting model: Consider the
case where the true model is y ∼ N(0, 1) and we fit the model y ∼ N(µ, σ) by esti-
mating µ and σ by maximum likelihood. Further assume that data are generated by
sampling from a standard normal distribution using simulation. Even if maximizing
the likelihood identifies zero and 1 as parameter estimates, the logL(∆t(Uk|θ̂k))
of each observation will not be zero. It will rather be the standard normal density
evaluated at y, so the total logL(∆t(Uk|θ̂k)) will not be zero in general.17

Ranking all utility models according to logL(∆t(Uk|θk)) and choosing the model
with the highest likelihood as the model selection criterion is usually not rec-
ommended for utility model selection, since the maximized likelihood function is
subject to overfitting, tendentially favoring multiparameter utility models such as
Prospect Theory (3 parameters) through to expected utility (one parameter) (Car-
bone and Hey (1994), Hey and Orme (1994), Carbone and Hey (1995) and Stott
(2006)). Rather, the literature on model selection suggests sorting utility models
according to the Akaike Information Criterion (AIC), which controls explicitly for
a varying number of parameters instead of using the maximized logL(∆t(Uk|θk))
(Akaike (1973), Akaike (1974), Bozdogan (2000), Pawitan (2001) and Burnham and
Anderson (2004)). The AIC is commonly expressed as

AIC = −2 logL(∆t(Uk|θ̂k))

nt
+

2Kk

nt
, (3.3)

according to Akaike (1974) in the representation of Amemiya (1980), where dividing
by nt, the number of observations in terms of trading days t and traded stocks n,
corrects for the different number of observations, and where Kk denotes the rank of
θk, representing the number of parameters to be estimated in utility model k. Due
to the general finiteness of our data set, we apply the corrected Akaike Information
Criterion (AICC), defined by

AICC = −2 logL(∆t(Uk|θ̂k))

nt
+

2Kk

nt
+

2Kk(Kk + 1)

nt(nt−Kk − 1)
, (3.4)

as first proposed by Sugiura (1978) for Ordinary Least Square (OLS) regressions
(for a discussion of the original version of the Akaike Information Criterion AIC
and AICC as model selection criteria, see Burnham and Anderson (2004)), which
replaces the penalty term of AIC by its exact term for bias adjustment, resulting
in a greater penalty for models with additional parameters in comparison to the
original AIC. We provide a more formal outline in the appendix.

4. A Simulation Study of Likelihood-based Utility Model Selection

Thus far, we have sketched the elements of the likelihood theory as applied in
experimental studies addressing individual preferences and argued that applying
maximum likelihood estimation provides asymptotically efficient and unbiased es-
timators. Moreover, making use of the characteristics of the likelihood function
log(L(∆t(Uk|θk))), particularly the structure of its surface—its elevation and its
steepness, allows filtering for the best-fitting model. As pointed out, experimental
literature often assumes that each single likelihood function of log(L(∆t(Uk|θk)))

17Note that even if we remove randomness from our data (i.e., the variation of the error term

is zero), the likelihood of each of these identical observations will be the normal density evaluated

at zero, which is not zero but a positive number (approx. 0.399). Thus, the overall logarithm of
the likelihood is nt · ln(0.399) > 0 even though we specified the correct model. Note that in our

case, the observations are not equal to their means due to ∆t(Uk|θ̂k). I am grateful to John Hey,

who made me aware of this.
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is independent. Given the tendency to extrapolate past moments into the future
and to keep track of paper gains and losses, the interlacing of the various function-
als of the likelihood function introduces an implicit dependency within and across
log(L(∆t(Uk|θk))), resulting in deficiencies in the surface of the likelihood func-
tion. In this case, the extent and direction of these effects are unclear and requires
investigation into how these adverse effects transmit to estimators for θ̂k|n,t and
by how much these imprecisions negatively affect identification of the underlying
utility mode.

To investigate the reliability of likelihood-based model selection procedures given
financial data and the identification of factors detrimental to this purpose, we con-
duct a conceptually simple simulation study that consists of four steps. First,
to control effects stemming from the financial times series, we simulate a series
of prices and their returns with known stochastic characteristics and market pa-
rameters. In the second step, we change perspective and take the position of an
individual investor with known utility functions and risk parameters, who faces this
set of hypothetical stocks, represented by the time series of returns. We estimate
the unknown market parameters needed for the third step, in which the investor
decides whether to buy, hold, or sell the hypothetical stocks according to inequality
(3.1). From this step, we obtain a set of trading sequences (one for each hypotheti-
cal stock), which we use in the final step to identify the underlying utility function
and infer its parameterization used to generate the trading sequence.

STEP 1: Simulation of a Set of Time Series for Given Market Parameters:

We simulate realizations of a sequence of returns based on a pre-specified sto-
chastic Markovian process to avoid inherent autocorrelation of our time series up
front. In total, we generate a set of 100 hypothetical stocks by simulating a series of
identically and independently distributed (logarithmic) returns spanning 312 days
each, denoted as

{
(
Rt,t+1|µ∆(t),Φ−1(0, σ)

√
∆(t)

)
: t = 1, 2, . . . , 312}.18

The time series of returns is modeled as discrete time Geometric Brownian motion
by the inverse of the cumulative standard normal distribution Φ−1(0, σ) plus a trend
µ, where the time step is set to ∆(t) = 1. To calibrate the trend variable µ and
standard deviation σ, we are guided by the results of Dimson et al. (2000), Dimson
et al. (2003) as well as publicly available data for the German stock market, and we
set the daily mean µ = 1.0004 and volatility σ = 0.0247.19 With regard to the risk-
free rate, we opt for a fixed daily net return of 0.0001, corresponding to a return of
3.67% assuming annual compounding. For the inverse of the cumulative standard
normal distribution of each simulated return sequence, we define the seed values of
the random number generator in Stata Version 10.1 (Cameron and Trivedi (2005),

18Due to the rolling-window procedure of Step 2, where the unknown market parameters are

estimated, we extended the time series of each stock by 60 days such that (technically) the length

is 312; the final time series after Step 2 thus spans 252 days, which is a common approximation
for the number of trading days in one year.

19Gross returns and risk premia (see Fama and French (1993)) are obtained from

http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data library.html#International as ac-
cessed on 02.12.2012 to obtain values for µ, which we use in the second step to match σ with

historical gross appreciation rates to make simulated returns correspond more closely to their em-
pirical equivalents. However, Bruckner et al. (2015) note that for non-US markets, Fama–French

factors cannot easily be exported, as these differ among the relevant data providers. This is a

minor issue in our work here, as using the factors provided by the database mentioned in Bruckner
et al. (2015) provides virtually similar market parameters.
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Baum (2006)) by a Halton sequence (see Halton (1960)) based on the prime 11 to
ensure the full spectrum of random numbers for the stochastic process is covered.20

Since the draws from a Halton sequence tend to be negatively correlated with
previous draws, this feature is beneficial to reduce simulation error, consequently
less simulations are required to obtain statistically reliable results (Train (2009)).
For example, Bath (2001) find that a sequence of 100 Halton draws provides more
precise results for a mixed logit estimation than 1000 random draws. Table (1)
illustrates the simulations conducted in Step 1.

Figure 1. Simulated Time Series of Prices

The figure below illustrates the development of simulated returns for 100 draws used in this

simulation study. Market parameters are fixed at µ = 1.0004 and σ = 0.0247, respectively. For

this table, prices are calculated on a daily basis using the simulated returns generated in Step 1.
The starting price of each stock is set to 100.

STEP 2: Estimation of Market Parameters from Simulated Time Series:

In the second step, we take the position of an individual investor and estimate
the market parameters needed to fill the respective utility functionals. For this
purpose, estimators for the mean µ̂t and volatility σ̂t were obtained using a rolling-
window procedure with a lookback horizon of l = 60 days. Values of upside and
downside returns R̂D,t and R̂U,t were then derived from µ̂t and σ̂t for each t, where

20A Halton sequence based on prime h is defined as st+1 = {st, st+ 1
ht
, st+ 2

ht
, . . . , st+ h−1

ht
},

where st+1 denotes the sequence at iteration t+1 of length h. The application of a Halton sequence
constitutes a well-defined draw spanning the standard uniform density, as it systematically fills in

the unit interval.
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R̂U,t = e
µ̂t
l +

√
1−p̂t
p̂t

σ̂2
t
l and R̂D,t = e

µ̂t
l −
√

p̂t
1−p̂t

σ̂2
t
l , respectively.21 Corresponding up-

side probabilities p̂t are derived by averaging observed up- and down-ticks, given a
change in prices occurs, since the true probability p of the underlying binomial pro-
cess is unknown to the individual investor (similar Weber and Camerer (1998)).22

STEP 3: Calculation of Trading Sequences for each Utility Function:

In the third step, given a vector θk of predefined risk preference parameters for
the respective utility function of type k of the simulated investors (one investor for
each utility model k), we generate a variety of artificial trading histories in terms
of roundtrip sequences (Shapira and Venezia (2001)), denoted accordingly as

{(R̂U,t, R̂D,t, Rf,t, p̂t|θk) : It ∈ [0; 1] ∀t = 1, 2, . . . , 252}.

The mathematical details of the utility functions used in this simulation study are
given in the Appendix.23 To calculate accrued returns, we set the gross realized
return to unity if the index is zero and add the realized logarithmic returns to Wt

if the index is 1 until the last day before it switches back to zero, which we take as
realized return being invested in the risk-free asset.24

To substantiate the set of utility functions that specifies ∆t(Uk|θk), we generate
the trading patterns for an investor characterized as a expected utility theory (EUT)-
type investor of the CRRA form (A.3) with the following settings:

{UEUT (Wt, RU,t, RD,t, Rf,t, pt|θEUT ∈ {δ})},
where θEUT : {δ ∈ {2}},

where we deliberately set Wt to zero at t = 1 and equal to the accrued return
R̂S,t from the risky investment for t ∈ {2, 3, . . . , T} for simplicity. Specifications
of the utility functionals are the commonly applied CRRA-form and exponential
power utility (EXPO) as proposed in Saha (1993). We contrast this simulated
trading behavior with those generated by generalized expected utility and generate
roundtrip sequences for an investor of rank-dependent utility (RDU)-type with the

21This is a standard procedure (Ingersoll (1987)) and is widely applied, as similar expressions

can be found in Johnson et al. (1997), Barberis and Xiong (2009), Ebert and Strack (2009) and
Johnson et al. (2012).

22Note that this behavior can imply rational behavior, since p̂t also serves as a maximum
likelihood estimator for the underlying true but unobservable probability p given a binomial dis-

tribution p̂t =
(t+1
j

)
pt−j+1(1 − p)j−1. The solution for the estimator p̂t = t−j+1

t
is derived by

taking the logarithm and differentiating with respect to p.
23In detail, to generate a sequence of trades that resembles the lottery task features as com-

monly framed in experimental studies, we define an index I[∆t(Uk|θk) + ε ≥ 0] similar to the
index used to obtain the choice probabilities in the previous chapter, yielding a series of zeros and
ones dependent on whether the investor holds the stock on a particular day. These sequences allow

us to define so-called roundtrips, defined as rows of ones similar to the definition of Shapira and
Venezia (2001), since the various trade-inventory rules Odean (1998) coincide for binary choice

situations. The effects of various accounting principles on the results is outside of the scope of this
paper. Our results are robust to different parameter settings, as we also simulate trading sequences
for different parameter values for all utility models k, and find virtually identical results.

24According to our definition, the roundtrip sequence comprises only the row of ones under
the fiction that a new mental account is opened if the investor sells and buys at a later point

in time. This avoids dilution effects due to accruing risk-free rates in the estimation and having
different starting values for Wt, with the result that risk preferences would be measured at different
locations of the utility functional, which we suspect yields different estimates if Wt is high.
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Table 1. Utility Models and Parameters θk used for Trading Sequences

This table describes the parameter set θk, its settings used for generating the trading sequences,

and the key reference. Expected utility models are denoted as EUT , and Rank-dependent Utility
is denoted as RDU . For Simple Prospect Theory (Tversky and Kahneman (1992)), we use the

notation SPT , whereas Cumulative Prospect Theory (Tversky and Kahneman (1992)) is denoted

as CPT . Further, for EUT and RDU , we use the notation CRRA for utility functionals with
constant relative risk aversion and EXPO to denote exponential power utility functions (Saha

(1993)). For SPT and CPT , we use the notation POWR to indicate models with kinked power-
functionals and CRRA if a power functional is used to specify the prospect value functional

(Gomes (2005)); in addition, DHG0 denotes value functionals as defined in DeGiorgi and Hens

(2006).

.

Set θk Interpretation Key Reference

E
U

T

CRRA δ = 2 Risk Aversion Gollier (2001)

EXPO δ = 2 Risk Aversion Saha (1993)
ρ = 1 Scaling Parameter Saha et al. (1994)

R
D

U

CRRA δ = 2 Risk Aversion Quiggin (1982), Quiggin (1993)
γ = 0.65 Weighting Parameter Quiggin (1982), Tversky and Kahneman (1992)

EXPO δ = 2 Risk Aversion Saha (1993)
ρ = 1 Scaling Parameter Saha et al. (1994)
γ = 0.65 Weighting Parameter Quiggin (1982)

S
P
T

CRRA α = 0.88 Risk Sensitivity Gomes (2005)
λ = −2.25 Loss Aversion Tversky and Kahneman (1991)
γ = 0.65 Weighting Parameter Quiggin (1982), Tversky and Kahneman (1992)

POWR α = 0.88 Risk Sensitivity Kahneman and Tversky (1979)
λ = −2.25 Loss Aversion Tversky and Kahneman (1991)
γ = 0.65 Weighting Parameter Quiggin (1982), Tversky and Kahneman (1992)

DGH0 α± = 0.20 Scaling Parameter DeGiorgi and Hens (2006)

λ+ = 6.52 Scaling Parameter DeGiorgi and Hens (2006)

λ− = 14.7 Scaling Parameter DeGiorgi and Hens (2006)
γ = 0.65 Weighting Parameter Quiggin (1982), Tversky and Kahneman (1992)

C
P
T

CRRA
α = 0.88 Risk Sensitivity Gomes (2005)
λ = −2.25 Loss Aversion Tversky and Kahneman (1991)
γ = 0.65 Weighting Parameter Quiggin (1982), Tversky and Kahneman (1992)

POWR α = 0.88 Risk Sensitivity Tversky and Kahneman (1992)
λ = −2.25 Loss Aversion Tversky and Kahneman (1991)
γ = 0.65 Weighting Parameter Quiggin (1982), Tversky and Kahneman (1992)

DGH0 α± = 0.20 Scaling Parameter DeGiorgi and Hens (2006)

λ+ = 6.52 Scaling Parameter DeGiorgi and Hens (2006)

λ− = 14.7 Scaling Parameter DeGiorgi and Hens (2006)
γ = 0.65 Weighting Parameter Quiggin (1982), Tversky and Kahneman (1992)

following settings

{URDU (Wt, RU,t, RD,t, Rf,t, pt|θRDU ∈ {δ, γ})},
where θRDU : {δ ∈ {2}; {γ ∈ {0.65}}}

with decision-weightings according to Quiggin (1982) (QU82 ) and Tversky and
Kahneman (1992) (KT92 ), regarding the utility functional, we use CRRA and
EXPO. To test the sensitivity of the likelihood-based model selection with respect
to non-standard utility functions, we also consider non-expected utility investors of
simple prospect theory (SPT)-type (Kahneman and Tversky (1979)) of the form

{USPT (Wt,WRP , RU,t, RD,t, Rf,t, pt|θSPT ∈ {α, γ λ)},
where θSPT : {α ∈ {0.88}; {γ ∈ {0.65}; {λ ∈ {−2.25}},

where we consider WRP to be located at the purchase price of the risky asset with-
out inherent dynamics.

We accompany the results from the generalized expected utility models by the
trading sequences of a cumulative prospect theory (CPT)-type investor with the
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following settings

{UCPT (Wt,WRP , RU,t, RD,t, Rf,t, pt|θCPT ∈ {α, γ λ))},
which covers approximately the upper and lower bounds of estimated parameteri-
zations from experimental studies. As for the SPT case, we use a decision weight
according to Quiggin (1982) and Tversky and Kahneman (1992) for the CPT func-
tion. For SPT and CPT, we specify the functional form of the value functional
according to a power function (Kahneman and Tversky (1979)) and contrast the
results with an CRRA functional (as in Barberis et al. (2001) and Gomes (2005)),
exponential power functional (EXPO) and a piecewise negative exponential power
functional (DGH0 ) as defined in DeGiorgi and Hens (2006). Table (1) provides an
overview of the utility models used and their parameter settings in this simulation
study.

As SPT and CPT type investors are expected to be sensitive with respect to
the prospect horizon, such that we calculate the respective utilities according to a
predetermined forecast period, denoted as τ . Due to the fact that CPT and SPT
coincide under τ = 1 and are thus indistinguishable, we set τ = 20. To avoid side
relations among the elements of θk and to model decision errors as, e.g., Carbone
and Hey (1994) and Carbone and Hey (1995), we add a normally distributed error
term ε to the difference of the respective utility of the risky stock and the riskless
money market account, for which we deliberately set the standard deviation of the
error equal to 0.01. On each day, the hypothetical investor invests in the risky stock
whenever ∆t(Uk|θk) + ε ≥ 0, which seems justified given the evidence regarding
the day trading in stock markets (e.g., Jordan and Diltz (2004) and Linnainmaa
(2005)). If this condition is satisfied, we set the indicator I[∆t(Uk|θk)+ ε ≥ 0] to 1,
zero otherwise. Repeating this for all 252 trading days of each time series of Step
1 yields the required trading sequences for the maximum likelihood estimation in
Step 4.

STEP 4: Estimation and Selection of Utility Function from Trading Sequences:

In the final step, we take the trading sequences from Step 3, evaluate the like-
lihood function log(L(∆t(Uk|θk))) for each utility type k and perform the model
selection. In detail, for each of the 100 trading sequences of each investor of utility
type k, we loop through all conceivable utility functions, for which we estimate
the associated risk preference vector θk and the standard deviation of the error
term σi. Regarding the latter, we transform σε in the likelihood estimation by an
exponential function (as described by Rabe-Hersketh and Everitt (2004), Chapter
13) to ensure that the ascertained estimator is strictly positive. We recover the
estimator for σε and the associated standard errors using the nlcom command in
Stata version 10.1 (for details on the maximum likelihood estimation see Gould
et al. (2006)). For each trading sequence of an investor of utility type k, every
time the likelihood function is evaluated for each conceivable utility function, we
rank the utility models by sorting the corrected Akaike criterion (AICC) before
proceeding with the next trading sequence for this investor.

For linear-in-parameter logit models, McFadden (1974) shows that there exists
a unique and global maximum of the likelihood function; however, due to util-
ity models such as RDU , SPT , and CPT , and therefore the nonlinear structure
of ∆t(Uk|θk), it cannot be expected that the likelihood function we face is well-
behaved and can likewise be characterized by a unique global maximum. This has
several consequences for the results of a model selection procedure: If it cannot
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be ruled out that θ̂k|n,t is the result of a stopped numerical search due to a local
maximum in the likelihood function or a sufficiently flat region of L(∆t(Uk|θk))
(e.g., McCullough and Vinod (2003)), then estimates of θk are potentially located
far from the true values. If nesting models are tested against nested models, the
imprecision in the estimation of θ̂k|n,t thus may favor the former, since the respec-
tive parameter constraints cannot be ascertained properly.

We address potential problems in the numerical search algorithm stemming from
deficiencies in the surface of the likelihood function logL(∆t(Uk|θk)) in two ways:
First, in accordance with suggestions from the literature (Judge et al. (1985), their
Appendix B, Ruud (2000) and Gould et al. (2006)) we modify the numerical search
algorithm every five steps. Thus, for the numerical search algorithm required to
evaluate log(L(∆t(Uk|θk))), we run a Newton-Ralphson procedure for the first five
steps. If no solution is obtained or the algorithm fails to converge, we switch to the
Davidon-Fletcher-Powell algorithm (Fletcher (1980)) for the next five iterations to
push the estimates outside the critical section of the likelihood function and then
return to the former technique.25 With regard to the number of iteration steps, we
follow Cramer (1986) and implement a maximum of 30 iterations. Second, another
frequent suggestion to address the local maximum problem is to repeatedly use dif-
ferent starting values for the numerical algorithm (Liu and Mahmassani (2000)) and
to check whether the same solution is obtained. We adopt this idea and systemat-
ically change the vector of starting values within the boundaries of our parameter
set θk for the numerical algorithm by a Halton sequence based on the prime 7.
Every time Stata reports successful convergence, we store the estimates and repeat
this procedure using a new starting vector. The evaluation of logL(∆t(Uk|θk)) is
repeated 11 times and the estimates as well as the value of the likelihood function
with the highest absolute value for logL(∆t(Uk|θk)) are chosen.26

5. Preliminary Analysis of the Results

In this and the next section, we present the results from our simulation study.
To begin with, we generate 100 hypothetical stocks by generating their time se-
ries of returns in Step 1 and estimate the market parameters in Step 2. Similar
to Hey and Orme (1994), we estimate the utility functionals described in Table
(1) based on the trading sequences generated in Step 3. The resulting number
of investors, for which we evaluate the likelihood function L(∆t(Uk|θk)) is thus
determined by the number of simulated stocks and the number of utility models
considered. Accordingly, a total of 18 utility models have to be estimated, since, for
each stock simulated in Step 1, one trading sequence per time series of returns for

25A trial-and-error search in terms of number of iterations and computational time shows

that among the available numerical search techniques, the Berndt-Hall-Hall-Hausman algorithm

(Berndt et al. (1974)) performs worst, which leaves the Newton-Ralphson and Davidon-Fletcher-
Powell algorithm (Fletcher (1980)), a result that is in line with the results found by Griffiths et al.

(1987). There is no clear winner between the latter two methods; thus, we compromise and use
a mixed iteration procedure as described in the text. Note that if a quadratic approximation
of L(∆t(Uk|θk)) provides a good description the log-likelihood function, then only a few steps

are needed to find the maximum (if the fit is perfect, then the maximum can be found by one
iteration only). We find that an acceptable quadratic approximation of L(∆t(Uk|θk)) prevails

only for CRRA utility models (Train (2009)).
26Note that there are plenty more ways to deal with local maxima: For example, a stochastic

optimization algorithm that has the potential to overcome the local maximum trap was developed

by Kirkpatrick et al. (1983), and is known as simulated annealing. Other techniques include
gradient-sensitive hill climbing and random restart methods (see for details Rich and Knight

(1991)).
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each utility-type investor is generated, comprising 53 preference parameters each
plus 18 nuisance parameters for estimation of the variance of the error term, total-
ing 71 parameters. As the evaluation process loops 11 times through all possible
likelihood functions (we repeat each estimation using different starting values as
described in Step 4 (see Chapter 4)) of all 18 utility models for each investor, the
number of utility models to be evaluated sums to 19, 800 utility models, requiring
estimation of 1, 405, 800 preference and nuisance parameters that need to be found
numerically. Given the simulated time series of returns (252 trading days), this
theoretically sums to 4, 989, 600 single likelihood functions.

Before we begin to elaborate our results, we need to identify potential problems
that might interfere with and compromise the quality of utility model selection. In
particular, note that the quality and reliability of utility model selection procedures
depend on the accuracy of the numerical evaluation of the respective utility models
integrated in the likelihood function. Our estimations (see Table (2)) show that
from 19, 800 utility models, we are able to evaluate 14, 738 utility models (approx.
74.43%) successfully; however, we observe some variations in these numbers: for
EUT investors, we are able to evaluate 1, 836 of all 2, 200 models, whereas these
figures are lower for RDU (3, 318 out of 4, 400 models), and the lowest success rate
is for SPT (4, 349 out of 6, 600 models) and CPT investors (4, 364 out of 6, 600
models). Recall that each of the 11 loops we perform to evaluate the likelihood
function is characterized by a different parameter vector of starting values, which
is an indication of problems in the surface of the likelihood function. Indeed, in-
spections of our results from evaluation of logL(∆t(Uk|θk)) reveal for 3, 340 models
several problems associated with evaluation of the likelihood function. In particular,
we detect missing values for logL(∆t(Uk|θk)) associated with a stopped numerical
search algorithm.

Furthermore, regarding 1, 722 utility models, we identify 954 utility models where
values for logL(∆t(Uk|θk)) and estimators for θk are provided and numerical search
reported convergence but standard errors were set to missing. Finally, for 768 mod-
els, we find large standard errors after evaluation of logL(∆t(Uk|θk)). We discuss
each of these problems in detail, as earlier simulation studies on utility model se-
lection such as Carbone and Hey (1994) also explicitly report similar difficulties in
the evaluation of the likelihood function but do not discuss their implications on
their results in detail. Due to the fact that utility model selection based on AICC
strongly depends on the surface of logL(∆t(Uk|θk)), problems such as insufficient
steepness of the likelihood function or convex segments can negatively affect the
ranking of utility models, and thus the accuracy of model selection (e.g., if the
true utility model cannot be evaluated and is therefore not included in the model
ranking because its AICC cannot be determined).

As mentioned above, while running the evaluation of the utility models k in
Step 4, we noted that from 5, 062 utility models, 3, 340 models cannot be evalu-
ated, notably because the iteration gets stuck (2, 619 utility models) or exceeds
the maximum iteration steps (721 models) such that the program provides missing

values for logL(∆t(Uk|θ̂k)). As part of a more detailed investigation, we check
whether the true underlying utility model was assessed successfully in each eval-
uation and discard those cases where the true underlying utility model cannot be
assessed, as the corresponding likelihood function cannot be evaluated with respect
to θk.
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Table 2. Frequency of Appearance for each Utility Model

This table captures the proportion of evaluated utility models to the total number of utility mod-

els. The left column reports the share of utility model k across all utility-type investors’ trading
sequences for which the corresponding likelihood function can be evaluated, denoted as % calc..

The right column captures the share of true utility model k for which the corresponding likeli-

hood function cannot be evaluated (i.e., where the numerical search algorithm was terminated)
given the k-type investors’ trading sequence, denoted as % ¬ calc. k. Expected utility models are

denoted as EUT , Rank-dependent Utility is denoted as RDU . Simple Prospect Theory (Kahne-
man and Tversky (1979)) uses the notation SPT , whereas Cumulative Prospect Theory (Tversky

and Kahneman (1992)) is denoted as CPT . Decision weights in accord with Quiggin (1982) are

denoted as QU82 and as KT92 for decision weights, as in Tversky and Kahneman (1992). If
no decision weights are applicable, we use the abbreviation None. Further, we use the notation

CRRA for CRRA utility functionals and EXPO to denote utility functions as in Saha (1993).

For SPT and CPT , we use the notation POWR for models with kinked power-functionals as in
Kahneman and Tversky (1979) and DHG0 to denote value functionals as defined in DeGiorgi and

Hens (2006). Note that the shares listed do not sum to 100%.
.

EUT RDU SPT CPT

% calc. % ¬ calc.k % calc. % ¬ calc.k % calc. % ¬ calc.k % calc. % ¬ calc.k

C
R

R
A None 84.80% 0.60% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

QU82 0.00% 0.00% 73.40% 0.68% 81.60% 0.99% 69.50% 0.60%
KT92 0.00% 0.00% 67.10% 0.55% 61.30% 0.23% 86.70% 1.37%

E
X

P
O None 82.10% 1.02% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

QU82 0.00% 0.00% 87.10% 0.70% 0.00% 0.00% 0.00% 0.00%
KT92 0.00% 0.00% 74.00% 0.35% 0.00% 0.00% 0.00% 0.00%

P
O
W

R None 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
QU82 0.00% 0.00% 0.00% 0.00% 62.30% 0.24% 70.30% 0.31%
KT92 0.00% 0.00% 0.00% 0.00% 64.70% 0.52% 68.80% 0.58%

D
G

H
0 None 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

QU82 0.00% 0.00% 0.00% 0.00% 86.00% 0.65% 75.20% 0.73%
KT92 0.00% 0.00% 0.00% 0.00% 79.00% 0.43% 65.90% 0.27%

According to Table (2), the probability that the true underlying utility model is
among those models that cannot be evaluated is 0.61%, which is smaller than the
probability that this happens by coincidence (5.56%). To illustrate this for EUT ,
we find that among those 167 out of 1, 100 EUT -models where the likelihood func-
tion was set to missing, there is 1 case (approx. 0.598%), where the unevaluated
utility model is a EUT model. If this were purely coincidental, we would expect
that we could find approximately 9 cases, where an EUT -utility model is among
those models that cannot be evaluated. These cases, where the true utility model
cannot be evaluated, are distributed evenly across all utility types, thus we do not
expect that this biases our findings systematically when sorting the utility models
according to their attained Akaike criterion. However, note that we did not discard
those cases where Stata reports successful convergence and provides values for the
likelihood function and θ̂k|n,t, but associated standard errors were set to missing
(1, 722 utility models were affected by this issue).

Since we run the calculations under a lf specification of logL(∆t(Uk|θ̂k)) in

Stata, under which H(∆t(Uk|θ̂k)) and S(∆t(Uk|θ̂k)) are approximated numer-
ically, we change the method and essential parts of the program to obtain the
elements of H(∆t(Uk|θ̂k)) for a detailed analysis. In detail, we select those mod-
els where Stata reported missing values for standard errors or where the search
algorithm failed to proceed after a number of iterations, and rewrite the maximum
likelihood program as a d2-evaluator to gain further insight into the characteristics
of the Hessian and the information matrices. We find that for plausible values

18



S. T. Jakusch

of θk, the determinant of the Hessian matrix detH(∆t(Uk|θ̂k)) is indeed fairly
close to zero.27 This has several consequences for some of the numerical meth-
ods, such as for the Newton-Ralphson method, which runs into problems because
the stepsize, governed by −H(∆t(Uk|θk))−1, cannot be determined if the Hes-
sian matrix is degenerate. Indeed, we find terminations of the search algorithm
predominantly in those iterations where the Newton-Ralphson method governs.
Note that the Davidon-Flechter-Powell algorithm does not require an evaluation
of −H(∆t(Uk|θk))−1. To circumvent the impossibility of evaluating the inverse of
H(∆t(Uk|θk)), we identify those models for which the Newton-Ralphson algorithm
failed to work, rerun the estimation with the Berndt-Hall-Hall-Hausman algorithm
(Berndt et al. (1974)), and additionally invoke the difficult option at the ml

model command. If the Hessian is singular for some values of θk, then the Berndt-
Hall-Hall-Hausman algorithm should overcome this by construction. In detail, the
Berndt-Hall-Hall-Hausman algorithm replaces H(∆t(Uk|θk)) by the outer product
of the scores, which is an approximation of the covariance matrix of the score vectors
if the average scores were zero (Cramer (1986)). Note that this is asymptotically
equivalent to H(∆t(Uk|θk)) (Griffiths et al. (1987)) and thus independent from the
assumption that H(∆t(Uk|θk)) has full rank.28

Re-estimation of these utility models using the Berndt-Hall-Hall-Hausman algo-
rithm shows that we can cause the majority of them to converge, although a consid-
erable sum of utility models (1, 730 utility models, corresponding to approximately
91.26%) still cannot be evaluated accurately (see Table (3)). However, we are able
to reduce the number of cases where the true utility model cannot be evaluated to
approximately 0.11%. This achievement comes with an additional computational
burden, as more steps are required to provide a solution for θ̂k, and estimators
θ̂k|n,t differ significantly from the true parameters. Note that a large number of
iterations is susceptible to yielding dubious results (Cramer (1986)), because of like-
lihood functions with convex segments due to the incorporated decision-weighting
function, as in RDU , or due to the convex structure of some value functions as in
SPT . This re-assessment clearly requires more than 30 iterations; however, it nev-
ertheless yields ambiguous outcomes.29 The large number of iterations is consistent
with the results of Griffiths et al. (1987), who find in their Monte Carlo simulation
study that the Newton-Ralphson algorithm performs best under multicollinearity
for a probit model, whereas the method of Berndt-Hall-Hall-Hausman is found to
be least efficient. This is plausible, since the Berndt-Hall-Hall-Hausman algorithm
is expected to work best if the likelihood function can be sufficiently approximated
by a second-order Taylor approximation (Train (2009)), but provides poor results
in the face of highly nonlinear likelihood functions (Pawitan (2001)). Consequently,
literature from the field of experimental economics usually does not recommend the
Berndt-Hall-Hall-Hausman method for estimation of utility functions, as pointed

27Technically, exact singularity of H(∆t(Uk|θ̂k)) is difficult to obtain because the determinant
is a real-valued variable and the precision of any statistical program is limited; thus, in this paper,

we refer to near-singularity when we mention the singularity of H(∆t(Uk|θ̂k)). For completeness,

one way to detect the extent of near-singularity is outlined in Belsley et al. (2004).
28Another possibility is to add a constant element to the diagonal elements ofH(∆t(Uk|θk))−1

until this expression becomes invertible. This is known as the Marquardt algorithm (Marquardt
(1963)); it represents the analogous case for a ridge regression (Cramer (1986)) that is usually
recommended if multicollinearity is present.

29Application of the Berndt-Hall-Hall-Hausman algorithm provides several nuances with re-

spect to its effectiveness; in particular, for CRRA, the algorithm yields results accompanied by an
acceptable number of iteration steps, being not significantly different from the baseline procedure

as outlined in the text, whereas the quality of θ̂k|n,t as well as the number of steps necessary

deteriorates with RDU , SPT , and CPT , as well as with inclusion of heterogeneous error terms.
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Table 3. Frequency of Appearance for each Utility Model for BHHH

This table captures the proportion of evaluated utility models to the total number of utility models

if the Berndt-Hall-Hall-Hausman algorithm is used. The left column reports the share of utility
model k across all utility-type investors’ trading sequences for which the corresponding likelihood

function can be evaluated, denoted as % calc.. The right column captures the share of true

utility model k for which the corresponding likelihood function cannot be evaluated (i.e., where
the numerical search algorithm was terminated) given the k-type investors’ trading sequence,

denoted as % ¬ calc. k. Expected utility models are denoted as EUT , Rank-dependent Utility
is denoted as RDU . Simple Prospect Theory (Kahneman and Tversky (1979)) uses the notation

SPT , whereas Cumulative Prospect Theory (Tversky and Kahneman (1992)) is denoted as CPT .

Decision weights in accord with Quiggin (1982) are denoted as QU82 and as KT92 for decision
weights as in Tversky and Kahneman (1992). If no decision weights are applicable, we use the

abbreviation None. Further, we use the notation CRRA for CRRA utility functionals and EXPO

to denote utility functions as in Saha (1993). For SPT and CPT , we use the notation POWR for
models with kinked power-functionals as in Kahneman and Tversky (1979) and DHG0 to denote

value functionals as defined in DeGiorgi and Hens (2006).
.

EUT RDU SPT CPT

% calc. % ¬ calc.k % calc. % ¬ calc.k % calc. % ¬ calc.k % calc. % ¬ calc.k

C
R

R
A None 93.90% 0.18% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

QU82 0.00% 0.00% 90.60% 0.18% 91.60% 0.18% 87.90% 0.09%
KT92 0.00% 0.00% 88.50% 0.09% 91.20% 0.09% 98.60% 0.09%

E
X

P
O None 91.40% 0.09% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

QU82 0.00% 0.00% 93.10% 0.09% 0.00% 0.00% 0.00% 0.00%
KT92 0.00% 0.00% 93.50% 0.00% 0.00% 0.00% 0.00% 0.00%

P
O
W

R None 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
QU82 0.00% 0.00% 0.00% 0.00% 82.20% 0.09% 89.10% 0.18%
KT92 0.00% 0.00% 0.00% 0.00% 85.70% 0.09% 88.40% 0.09%

D
G

H
0 None 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

QU82 0.00% 0.00% 0.00% 0.00% 98.60% 0.18% 98.30% 0.09%
KT92 0.00% 0.00% 0.00% 0.00% 90.20% 0.09% 89.90% 0.09%

out by Harrison and Rutstrom (2008) and Harrison (2008).

Concerning the 954 models with missing standard errors, the search algorithm in-
dicates convergence and a solution for θ̂k is found, although it cannot be considered
reliable (Gould et al. (2006)). We find this problem especially prevalent for RDU
(158 models), SPT (165 models), and CPT (131 models) under decision weights
according to Tversky and Kahneman (1992). Closer inspection of the iteration
shows that Stata noted that the likelihood function is not concave in the last iter-
ation step, indicating that the negative of the inverse of the Hessian matrix, which
determines the step size of the numerical search algorithm, is not positive definite.
Recall that if the likelihood function is concave, the Hessian matrix H(∆t(Uk|θ̂k)),
the second derivative of the likelihood function, is negative definite for the full
spectrum of θ̂k, tantamount to a declining slope of logL(∆t(Uk|θ̂k)) with respect

to one element of θ̂k, ceteris paribus all other elements fixed. If H(∆t(Uk|θ̂k)) is

negative definite, so is its inverse H(∆t(Uk|θ̂k))−1 and the negative of the inverse

−H(∆t(Uk|θ̂k))−1, determining the stepsize in the Newton-Ralphson method, is

therefore positive definite. However, if −H(∆t(Uk|θ̂k))−1 is negative definite, the

Newton-Ralphson algorithm moves down the slope of logL(∆t(Uk|θ̂k)) and thus
away from the maximum. Re-running the evaluation of the likelihood function us-
ing the Berndt-Hall-Hall-Hausman algorithm, we find that for the majority of our
utility models, standard errors are now provided. Note that the Berndt-Hall-Hall-
Hausman algorithm moderates the problems of −H(∆t(Uk|θ̂k))−1 as the direction
of the search is determined by the outer product of the scores, which is necessarily
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positive definite. This therefore guarantees an increase of logL(∆t(Uk|θ̂k)) in each
iteration, even if the log-likelihood function displays convex segments.

Furthermore, we also detect for 768 utility models for which Stata reported suc-
cessful convergence and where estimators for θk are provided, the associated stan-
dard errors, according to the Cramér-Rao Lower Bound (Rao (1945) and Cramer

(1946)) derived from the inverse of I(∆t(Uk|θ̂k)), are large, because the inverse of
the information matrix is small. Deficiencies in the likelihood function that result in
inflated standard errors for θ̂k|n,t could indicate flat sections (such as plateaus and
saddle points) in the surface of the likelihood function, probably stemming from

∆t(Uk|θk). Recall that large standard errors reflect the instability of θ̂k|n,t, since

a flat segment of logL(∆t(Uk|θ̂k)) contains theoretically infinitely many solutions

of θk. In particular, a flat surface of logL(∆t(Uk|θ̂k)) could point to a certain

degree of multicollinearity in logL(∆t(Uk|θ̂k)) (Griffiths et al. (1987)) or poten-
tial under-identification problems (Judge et al. (1985), Keele and Park (2006) and
Greene (2008), for utility models see Carbone and Hey (1994)) might be present.30

We discuss each of these possible reasons below.

The effects of multicollinearity in linear models are well established (see, for ex-
ample, Judge et al. (1985), Lesaffre and Marx (1993), Belsley et al. (2004), Greene
(2008) and Wooldridge (2010)),31 For nonlinear models such as the probit or logit,
however, the consequences are less certain, although some solutions have been sug-
gested to transform the problem into a known linear one (e.g., Schaefer (1986)),32

This, in turn, suggests that the asymptotic properties of θ̂k|n,t of the probit model
under multicollinearity may also hold (McLeish (1974)) with consequences similar
to the linear model. For a nonlinear likelihood model, multicollinearity can lead to
dependencies between and within the score vectors S(∆t(Uk|θk)), thus invalidating
the non-singularity assumption of the information matrix I(∆t(Uk|θk)) (Cramer
(1986)). The likelihood function log(L(∆t(Uk|θk))) then displays a ridge instead of
a sharp peak, yielding inflated standard errors, instability in parameter estimates
(as infinitely many solutions for θ̂k|n,t exist), and shortcomings in the numerical
search algorithms (Cramer (1986)), additionally compromising the precision of the

estimates of θ̂k|n,t. Yet, note that multicollinearity, per se, does not automatically
invalidate the maximum likelihood properties, as simulation studies provide some
evidence that the normal distribution property of the resulting distribution may
still be intact (Griffiths et al. (1987)), especially if financial data contains a larger
number of observations such that it can be expected that these particular asymp-
totic properties are likely to hold.

30Under moderate multicollinearity, the step size of a search algorithm is reduced if entering

flat segments of logL(∆t(Uk|θ̂k)) as a flattening of the likelihood function might indicate that

the maximum is close (Train (2009)). If logL(∆t(Uk|θ̂k)) is characterized by a flat surface over
a large range of plausible θk due to a sufficient degree of multicollinearity, the application of

such an algorithm results in an increased number of iteration steps or a termination of the search

procedure given a maximum number of iteration steps, such that the respective utility model is
not evaluated adequately.

31For instance, in linear regression models, perfect multicollinearity leads to difficulties in
inverting the vector product of the predictor variables (Belsley et al. (2004)).

32In particular, Fomby et al. (1978) show for the linear probit model that by applying a

principal component transformation, the information matrix I(∆t(Uk|θ̂k)) can be restated in

a known form, particularly as the inverse of the covariance matrix for weighted least squares
(Griffiths et al. (1987)).
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Ridges and plateaus in the likelihood function logL(∆t(Uk|θ̂k)), both corre-

sponding to singularity (or near-singularity) of the Hessian matrix H(∆t(Uk|θ̂k)),
could also point toward under-identification problems (Cramer (1986), Wooldridge
(2010)), a problem also detected in simulation studies similar to ours (Carbone and
Hey (1994) and Carbone and Hey (1995)).33 The remedy for under-identification

is to avoid side relations among the elements of θ̂k similar to those reported by
Gonzalez and Wu (1999). Note that if such an interdependence exists, then the

variations of θk and the estimated parameters θ̂k are restricted to a subset of
H(∆t(Uk|θ̂k)) of less than the dimension of θk, denoted as Kk. As a consequence,

the rank of H(∆t(Uk|θ̂k)) is less than Kk and some of the elements of θk cannot be
identified (Cramer (1986)). Consequently, the numerical search algorithm endlessly

cycles over the parameter space of θk, as no unique maximand θ̂k of the likelihood
function exists. Similar to multicollinearity, the fact that different admissible pa-
rameters of θk can define the same probability density, suggests that there exist
infinitely many parameters that maximize logL(∆t(Uk|θ̂k)). Side relations among
the parameters of θk are partly due to the features of the different utility models
used as, for example, for RDU , Yaari (1987) shows that even under risk neutrality,
risk-averse behavior can be introduced by the nonlinearity in the decision weights.
Re-running our simulation and eliminating the error term ε in Step 3, we find that
for a given trading sequence, we can determine several parameter combinations
within the spectrum of θk that can explain the observed trading sequence equally
successfully, as conjectured in Chapter 3, in which we discuss the role of the er-
ror term. Note that this observation is in line with such experimental studies as
Gonzalez and Wu (1999), who report signs of significant correlation among their
preference estimators for the CPT case, and Carbone and Hey (1995), who mention
that for EUT , they detect a large number of admissible parameter values that fit
their data. For example, Keele and Park (2006) report that the heteroscedastic lin-
ear probit model is quite prone to fragile identification (see also Judge et al. (1985)
and Greene (2008)). These authors suggests this weakness to be evident if the like-
lihood function is smaller for the heteroscedastic likelihood than for the likelihood
estimation where σε is homogeneous and constrained to unity. We conclude that
the magnitude of σε as well as its stochastic properties are subject to discussion,
as perhaps a higher level of σε or a different assumption of the distribution of the
error term might capture more accurately the inherent problems of the likelihood
function and the embedded utility functions therein. We discuss these points in the
next chapter.34

6. Utility Model Selection: Analysis and Discussion

A first inspection of the results of model selection, depicted in Table (4), in-
dicates that throughout the simulated trading sequences, the true utility models
obtained the highest rank in more than 50% of all cases. In detail, for EUT as
the true model, the correct utility model obtained, on average, in 55% of all cases

33Multicollinearity and under-identification are difficult to disentangle and thus not widely

discussed. We find this surprising, since, despite their prevalence in studies on utility model
selection and parameter estimation, under-identification issues are usually not discussed in detail

in terms of analysis, although a distinction is necessary to choose the remedies. If multicollinearity

causes the breakdown in the likelihood estimation, collecting new data free from the defects can
help. If a lack of identification is important to model assumptions, a modification of the model

and a revision of extraneous information may be inevitable (Cramer (1986)).
34I am grateful to John Hey, who pointed out the importance of running simulated trading

sequences by adding an error term ε to dampen the problem of under-identification.
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the first rank, where for other utility models, the outcomes are better. For RDU ,
the true utility model obtained, on average, in 57.25% the first rank, for SPT on
average in 66.45% and for CPT , on average, in 67.50% of all cases the first rank. If
a broader classification is accepted, the ranking of the respective utility model im-
proves as 92.70% of all utility functions can be classified correctly. This is reflected
in the overall likelihood values across all utility models, which are close to zero for
EUT and RDU and somewhat higher for SPT and CPT .35 This is surprising,
since despite the obscure stochastic properties of the additional uncertainty stem-
ming from ∆t(Uk|θ̂k), nuisance parameter σ̂ε seems to capture the stochastics from
the additional uncertainty reasonably well. Although we noted that the estimated
distribution of the error term σ̂ε = 0.031 is, on average, higher than the distribu-
tion of the error term used in the simulation to generate the trading sequences,
which we set to σε = 0.01, a t-test indicates that the estimators for σε = 0.01 are
significantly distinct from the true value only at a 10%-significance level (p-value

0.088). Inspecting the estimators θ̂k of true utility models shows that the quality of
our estimators varies among the various utility functions. We identify some cases
where the estimators are close to the true values (predominantly for SPT -type
(83%) and CPT -type investors (78%)); in other cases the estimators are significant
and distinct even at the 1%-significance level (for more than 37% of all EUT -type
investors and for 43% of RDU -type investors). We discuss the consequences of

this bluntness of θ̂k in a subsequent analysis. Henceforth, these results serve as a
benchmark for our elaborations on the influence of modifications.

We pointed out earlier that our simulation is conducted using a normally dis-
tributed error term ε, arbitrarily setting its standard deviation to σε = 0.01. How-
ever, in light of the significant deviations in θ̂k, particularly for EUR and RDU ,
the magnitude of σε might be too low. Recall that with regard to the significance
of our parameter estimates of each utility model k, we find that the introduction of
such an error term can help to resolve some under-identification problems. To elab-
orate the effects of ε, consider a situation in which the market parameters µ and σ
are fixed and known to the investor; consequently, upside and downside returns RU
and RD and the associated probabilities are fixed. If no error term is added to the
difference in utility ∆t(Uk|θk), the investor is invested in stocks always or never,
dependent on the set of parameters θk. This is not surprising; as the investor faces
the same time-independent decision problem, the investor will decide always to do
the same thing, as the investor is assumed to make no mistakes. Adding some ε to
∆t(Uk|θk) generates trading sequences with more variations, and the application

of maximum likelihood estimation of θk yields logL(∆t(Uk|θ̂k)) to be close to zero

with estimators for θ̂k and σ̂ε closer to the true values.

However, if µ and σ are not fixed and/or known to the investor such that market
parameters must be estimated from the time series of returns, additional fluctu-
ations with an unclear stochastic pattern arise from ∆t(Uk|θk), particularly the
dynamics of market parameters (due to the rolling-window estimation) and the
evolution of intermediate gains and losses. To locate the source of this additional
uncertainty, we rerun simulations with a stationary stochastic process using an
Ornstein-Uhlenbeck-Process (see Ornstein and Uhlenbeck (1930), Box et al. (2015)),
generating almost time-invariant estimators for RU,t, RD,t and for which we fixed

35The average of the likelihoods of each of logL(∆t(UEUT |θ̂EUT )) is −6.42, the average

of logL(∆t(URDU |θ̂RDU )) is −8.22, the average of logL(∆t(USPT |θ̂SPT )) is −22.87 and for

logL(∆t(UCPT |θ̂CPT )) is −21.09.
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Table 4. Base Case: Ranking of each Utility Model

This table captures the median and average ranking (below), denoted as Rank of each utility

model k for trading sequences where utility model k is the true utility model used to generate
these trading sequences. We also report the type of the first-ranked (1.st) and of the second-ranked

(2.nd) utility model (in brackets). Expected utility models are denoted as EUT , Rank-dependent

Utility is denoted as RDU . Simple Prospect Theory (Kahneman and Tversky (1979)) uses the
notation SPT , whereas Cumulative Prospect Theory (Tversky and Kahneman (1992)) is denoted

as CPT . Decision weights in accordance with Quiggin (1982) are denoted as QU82 (Q) and as
KT92 (K) for decision weights as in Tversky and Kahneman (1992). If no decision weights are

applicable, we use the abbreviation None. Further, we use the notation CRRA (C) for CRRA

utility functionals and EXPO (E) to denote utility functions as in Saha (1993). For SPT and
CPT , we use the notation POWR (P ) for models with kinked power-functionals as in Kahneman

and Tversky (1979) and DHG0 (D) to denote value functionals as defined in DeGiorgi and Hens

(2006). Significance levels are calculated according to Wilcoxon signed-rank tests comparing the
average ranking between the first-ranked and second-ranked utility models. We use ∗ ∗ ∗, ∗∗ and

∗ for significance at the 1%, 5% and 10% levels, respectively.

.

EUT RDU SPT CPT

Rank 1.st

(2.nd)
Rank 1.st

(2.nd)
Rank 1.st

(2.nd)
Rank 1.st

(2.nd)

C
R

R
A

None 1∗∗∗ EUTC 0 0 0 0 0 0

1.560
(
EUTE

)
- - - - - -

QU82 0 0 1∗∗∗ RDUCQ 1∗∗∗ SPTCQ 1∗∗∗ CPTCQ

- - 1.550
(
RDUCP

)
1.420

(
SPTPQ

)
1.480

(
CPTPQ

)
KT92 0 0 1∗∗∗ RDUCK 1∗∗ SPTCK 1∗∗∗ CPTCK

- - 1.500
(
RDUEP

)
1.480

(
SPTCQ

)
1.530

(
CPTDQ

)

E
X

P
O

None 1∗∗∗ EUTE 0 0 0 0 0 0

1.510
(
EUTC

)
- - - - - -

QU82 0 0 1∗∗∗ RDUEQ 0 0 0 0

- - 1.510
(
RDUCP

)
- - - -

KT92 0 0 1∗∗∗ RDUEP 0 0 0 0

- - 1.490
(
RDUEQ

)
- - - -

P
O
W

R QU82 0 0 0 0 1∗∗∗ SPTPQ 1∗∗∗ CPTPQ

- - - - 1.480
(
SPTPK

)
1.420

(
CPTDK

)
KT92 0 0 0 0 1∗∗∗ SPTPK 1∗∗∗ CPTPK

- - - - 1.510
(
SPTPQ

)
1.380

(
SPTPQ

)

D
G

H
0 QU82 0 0 0 0 1∗∗∗ SPTDQ 1∗∗∗ CPTDQ

- - - - 1.530
(
SPTPQ

)
1.360

(
CPTPQ

)
KT92 0 0 0 0 1∗∗ SPTDK 1∗∗ CPTDK

- - - - 1.420
(
SPTPQ

)
1.480

(
CPTPQ

)

pt = 50%. If additional disturbance arises from the estimation of market parame-
ters, then we expect a notable improvement in logL(∆t(Uk|θ̂k)). Note that since
a modification of the stochastic process affects all utility models, if additional un-
certainty is caused by market parameter estimation, all likelihoods are expected
to improve significantly. Inspections of logL(∆t(Uk|θ̂k)) for the different utility
models shows that for EUT , the maximized likelihood is close to zero, whereas for
SPT and CPT models, the overall likelihood remains large, although still ranging
in lower double figures, not significantly distinct from the baseline likelihood val-
ues on a 10%-significance level according to a likelihood-ratio test. The ranking of
all utility models compared to the baseline case in Table (4) shows no significant
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changes according to a Wilcoxon signed-rank test.36 We detect only small improve-
ment in logL(∆t(Uk|θ̂k)) for all utility models according to likelihood ratio tests for
the usual significance levels. We conclude that the source of additional disturbance
stems from accrued gains and losses within ∆t(Uk|θ̂k); as in the case of EUT and

RDU , the accrued return can be truncated from ∆t(Uk|θ̂k).

Tracing back the additional uncertainty to the dynamics of the accrued return,
it is not clear whether the estimation of the nuisance parameter σε captures this
additional uncertainty stemming from ∆t(Uk|θk), particularly if we try to overlay

the defects from ∆t(Uk|θ̂k) by increasing σε. We observe that an increase in σε
alters the trading sequences, and thus the magnitude of the accrued return within
the likelihood function. However, introducing higher disturbance of the error term
could lead to deterioration of the estimators, altering the trading sequences, and
thus affecting utility model selection negatively. To investigate the sensitivity of
our utility model selection with respect to the magnitude of the error term, we
rerun our simulation for various values of the standard deviation σε. According to
Table (5), a more pronounced standard deviation of the error term σε is detrimental
to utility model selection. In empirical data however, it cannot be expected that
the error term plays such a modest role as in our simulation. Thus, we wish to
eliminate the possibility that the likelihood approach shows a tendency to favor
a particular utility model if the error term dominates (i.e., other trading factors
matter and preference considerations are negligible).

Figure 2. Distribution of logL(∆t(Uk|θ̂k)) for Different Investors

The figures on the left illustrate the distribution of the log-likelihood values

logL(∆t(UEUT,CRRA|θ̂EUT,CRRA)), divided by the number of simulated draws for the

trading sequence of a EUT -type investor with CRRA utility functional. The figure on the right

shows the distribution of the log-likelihood values logL(∆t(UEUT,CRRA|θ̂EUT,CRRA)) divided

by the number of simulated draws of the EUT model with CRRA utility functional for a trading
sequence of a random trader where ε ∼ N(0, 1).

To investigate the sensitivity of our utility model selection with regard to a
further increase in σε, we extend our simulation and introduce the concept of a

36The significance of the differences in the rank scores between the baseline setting and the
results from a re-estimation under modified settings are based on a Wilcoxon signed-rank test
(Wilcoxon (1945); for the two-sample test see Mann and Whitney (1947)). This non-parametric

test seems appropriate for this purpose, as it can be used for outcomes that are coded ordinally
and that require no explicit distribution of the matched samples; yet, the test is comparable to a
t-test (Siegel (1956)).
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random trader, defined as an investor who trades based on economically irrele-
vant criteria that are purely independent from preferences (Kyle (1985) and Black
(1986)). For our simulation of the trading sequences, we define a Random Trader
as an investor who trades on other criteria that are unsystematic, standardized
in their variance, independent from utility considerations, and thus approximately
normally distributed with ε ∼ N(0, 1). We make the conjecture that the respective

log-likelihood values logL(∆t(Uk|θ̂k)) of each of the k utility models should be close
to the baseline log-likelihood logL(∆t(ε)) = −174.67 for a random traders’ trad-
ing sequence, as none of the models contributes further information to observed
trading data. In particular, to construct a random trader, we generate trading
signals by replacing the difference in utilities ∆t(Uk|θk) with a stochastic element
ε, characterized by a standard normal density with zero mean and standardized
variance, as mentioned above. Accordingly, the random trader has positive expo-
sure to the risky stock if argument ε yields a cumulative density Φ (ε) above 50%
and the investor prefers to hold the riskless investment otherwise. In all cases, the
obtained values of logL(∆t(Uk|θ̂k)) are not significantly different from the baseline
logL(∆t(ε)) according to likelihood-ratio tests conducted for each utility model

k.37 The differences in the likelihood logL(∆t(Uk|θ̂k)) for the EUT -type investor
trading sequence and the likelihood of a Random Trader trading sequence is also
illustrated in Figure 2. The log-likelihood of the simulated EUT -type investor is
close to its theoretical maximum, whereas, in contrast, the log-likelihood values of
the same utility model given a trading sequence of a Random Trader are distributed
around ln(0.5) and display higher dispersion.

Given the trading sequence of a Random Trader, sorting the conceivable util-
ity models according to AICC reveals a pronounced tendency to identify an SPT
model specification as the best fit, regardless of the combination of the various
return moment characterizations and stochastic processes (Wilcoxon signed-rank
test p-value 0.054). Note also that this effect persists if we simulate the trading
behavior with a certain degree of dispersion by increasing the magnitude of σε by
using ε ∼ N(0, σ2

ε ). In particular, we consider two cases in which we trigger a hold
signal whenever the cumulative density Φ(∆t(Uk|θk)/σ(∆t(Uk|θk))) exceeds 50%,
where the spread of the cumulative normal distribution depends on the difference
in utility, as is frequently assumed in experiments (Moffatt and Peters (2001) and
Loomes et al. (2002)). Note that this form of the error term corresponds to cases
where an investor makes more mistakes the larger the difference in utility. While
we obtain acceptable quality of model selection results for the endogenous case, we
detect a bias toward SPT in the latter case, notably for particularly high values
of σ(ε), as the resulting trading behavior resembles that of the random investor.38

37The corresponding p-values range from p-value 0.289 for SPT given POWR value functional

and a decision weight according to Quiggin (1982), up to p-value 0.382 for EUT given EXOP

utility functional.
38Note that the length of trading sequences from the Random Trader is sensitive to the mean

of ε and insensitive with respect to σε. The resulting trading sequences are short if the mean of ε
is set to zero, comparable to a trading pattern from a day trader. If longer trading sequences are

required, the mean of ε should be close to 0.013 to match the roundtrip length of an EUT -type

investor in our case. Due to the insensitivity regarding σε, the corresponding mean for ε can
be approximated by matching the upper bound of the integral of the cumulative distribution of

the Random Trader with the investment ratio of an EUT -type investor (number of observations
where the indicator is 1 divided by trading days). We estimate a proportional hazard model
as proposed by Cox (1972) to verify the conjecture that the generated trading sequences of the

random investor are akin to the sequences generated by introducing the disturbance σ(∆t(Uk|θk)).
A log-rank test (Mantel (1966)), as implemented in the sts test command in Stata, reveals no
significant difference between the two hazard rates.
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This may indicate some problems in identifying the correct utility model specifi-
cation if differences in utility represent only a minor aspect for investor decision
making in stock markets, as Grinblatt and Keloharju (2001c) and Levitt and List
(2007) point out.

As a central component of the decision model (3.2), the role of the stochastic er-
ror term is crucial to determination of the likelihood function, as we show; however,
the correct formal specification of ε is the subject of ongoing debate (see Harless and
Camerer (1994), Hey and Orme (1994), Loomes and Sugden (1995) and Ballinger
and Wilcox (1997) for a discussion of Cauchy and Laplace distributed errors), since
the distributional assumption may have consequences on the determination of the
best-fitting model. A frequently applied form is to define a utility ratio index, dis-
cussed in Harrison and Rutstrom (2008), related to a logit formulation as shown
by McFadden (1974). To test the sensitivity of our results regarding modification
of the distribution of the error term, we rerun our simulations under an indepen-
dently, identically extreme value (type 1) distributed error term ε with density

φ(ε) ∼ 1
σε
e−ε/σεe−e

−ε/σε
. The cumulative distribution of the error term used for

the likelihood function is therefore Φ(ε) = e−e
−ε/σε

and the difference in utility
plus the error term is described by a logistic function (Greene (2008), Train (2009)
and Hosmer et al. (2013); for utility model selection see Carbone and Hey (1995),
Loomes and Sugden (1995), Loomes et al. (2002) and Harrison (2008)).39 Accord-
ing to Table (6), our results are virtually unchanged. A Wilcoxon signed-rank test
indicates that the changes in the average rank between the baseline group and the
average ranks, where we use a logit specification of the error term instead, are
insignificant.40 Although the logistic distribution is characterized by fatter tails
in comparison to the standard normal distribution, the differences between these
distributions are usually insignificant (Hosmer et al. (2013)), which explains why
we find virtually the same results.41 Despite logit and probit, various other error
specifications and their relation to utility specifications are suggested and reviewed
in Hey (1995), Loomes and Sugden (1995), Ballinger and Wilcox (1997), Hey (2002)
and Loomes et al. (2002). Note that, under certain circumstances, using extreme
value distributed error terms can bias the results: Wilcox (2008) shows that in a
logit model according to Luce (1959), the finding that subjects behave according
to IARA may be biased by the fact that ε follows an extreme value distribution.42

With regard to the specification and estimation of σε, we mention that the nui-
sance parameter may also be able to cope with other issues arising with financial
data, such as the correlation structure within σε, i.e., error in decision making
of an investor carries over from previous periods, creating correlation among ε.

39Note that the mean of the extreme value distribution is not zero as for the standard normal

distribution (the usual interpretation of a zero mean is that investors do not do errors on average,

see Carbone and Hey (1995)); however, the mean appears to be immaterial.
40For example, for EUT , the corresponding p-value is 0.504, for RDU , its p-value is 0.373, and

for SPT and CPT the corresponding p-values are 0.324 and 0.425, respectively.
41However, despite this result, we suggest not to use logit, for several reasons: First, we cannot

exclude correlation effects in the error term, as Train (2009) points out. If these correlations exist,
they need to be modeled and estimated explicitly (Train (1986) and Train (2009)). Second, for

utility models where the value of the utility can be negative, such as SPT and CPT , this concept

violates certain axioms of rationality, since a logit specification is justified only under a positive
measure scale, such as, e.g., EUT (see Luce (1959)).

42In the experimental literature, the heterogeneous error likelihood specification is also referred
to as Fechnerian Error or white noise (Fechner (1966), a choice model has been developed by

Becker and Marschak (1963) and popularized by Hey and Orme (1994)), consistent with a probit

specification, as shown above.
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Table 6. Logit Error Specification: Ranking of each Utility Model

This table captures the median and average ranking (below), denoted as Rank of each utility

model k for trading sequences where utility model k is the true utility model used to generate
these trading sequences given a logit specification of the error term. We also report the type of the

first-ranked (1.st) and of the second-ranked (2.nd) utility model (in brackets). Expected utility

models are denoted as EUT , and Rank-dependent Utility is denoted as RDU . Simple Prospect
Theory (Kahneman and Tversky (1979)) uses the notation SPT , whereas Cumulative Prospect

Theory (Tversky and Kahneman (1992)) is denoted as CPT . Decision weights in accordance with
Quiggin (1982) are denoted as QU82 (Q) and as KT92 (K) for decision weights as in Tversky and

Kahneman (1992). If no decision weights are applicable, we use the abbreviation None. Further,

we use the notation CRRA (C) for CRRA utility functionals and EXPO (E) to denote utility
functions as in Saha (1993). For SPT and CPT , we use the notation POWR (P ) for models with

kinked power-functionals as in Kahneman and Tversky (1979) and use DHG0 (D) to denote value

functionals as defined in DeGiorgi and Hens (2006). Significance levels are calculated according to
Wilcoxon signed-rank tests comparing the average ranking between the first-ranked and second-

ranked utility models. We use ∗ ∗ ∗, ∗∗ and ∗ for significance at the 1%, 5% and 10% levels,

respectively.

.

EUT RDU SPT CPT

Rank 1.st

(2.nd)
Rank 1.st

(2.nd)
Rank 1.st

(2.nd)
Rank 1.st

(2.nd)

C
R

R
A

None 1∗∗∗ EUTC 0 0 0 0 0 0

1.560
(
EUTE

)
- - - - - -

QU82 0 0 1∗∗∗ RDUCQ 1∗∗∗ SPTCQ 1∗∗∗ CPTCQ

- - 1.550
(
RDUCP

)
1.420

(
SPTPQ

)
1.480

(
CPTPQ

)
KT92 0 0 1∗∗∗ RDUCK 1∗∗ SPTCK 1∗∗∗ CPTCK

- - 1.500
(
RDUEK

)
1.480

(
SPTCQ

)
1.530

(
CPTDQ

)

E
X

P
O

None 1∗∗∗ EUTE 0 0 0 0 0 0

1.510
(
EUTC

)
- - - - - -

QU82 0 0 1∗∗∗ RDUEQ 0 0 0 0

- - 1.510
(
RDUCK

)
- - - -

KT92 0 0 1∗∗∗ RDUEP 0 0 0 0

- - 1.490
(
RDUEQ

)
- - - -

P
O
W

R QU82 0 0 0 0 1∗∗∗ SPTPQ 1∗∗∗ CPTPQ

- - - - 1.480
(
SPTPK

)
1.420

(
CPTPK

)
KT92 0 0 0 0 1∗∗∗ SPTPK 1∗∗∗ CPTPK

- - - - 1.510
(
SPTPK

)
1.380

(
SPTCK

)

D
G

H
0 QU82 0 0 0 0 1∗∗∗ SPTDQ 1∗∗∗ CPTDQ

- - - - 1.530
(
SPTPK

)
1.360

(
CPTPK

)
KT92 0 0 0 0 1∗ SPTDK 1∗∗ CPTDK

- - - - 1.420
(
SPTPQ

)
1.480

(
CPTDQ

)

Autocorrelation within the structure of the error term may arise if other factors
affecting trading decisions, which are assumed to be independent from individual
risk preferences, correlate across time, which is suspected to alter the dispersion
of logL(∆t(Uk|θk)), and thus should be captured by σε. Since autocorrelation
does not affect the functional form of logL(∆t(Uk|θk)) per se, despite increasing
its spread via its dispersion (Pawitan (2001)), estimating σε should have no con-
sequences for the selection of the utility model, but it can indirectly interact with
model identification via the precision of estimates θ̂k|n,t.

43 To investigate the im-
pact of autocorrelation on σε, we consider the possibility that the error term ε may

43Note that the estimation of parameter σε introduces an element that lowers the concavity of

logL(∆t(Uk|θk)) and increases the number of iteration steps of our numerical search algorithm.
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be potentially autocorrelated within each investor’s trading sequence in reality, and
that such correlation may drive the high standard errors we expect to find in this
case (Wooldridge (2010)). Accordingly, in an earlier pretest of our likelihood ap-
proach, we modeled a lagged error term with lag 1 to analyze its effect on our
utility model selection results. We follow Roger (1994) and use the cluster option
in Stata within the ml model command, which invokes evaluation of the likelihood
function (see Harrison and Rutstrom (2008) and Harrison (2008)) to control for
the autocorrelation structure within each investor type (Harrison and Rutstrom
(2009)). We find that this action leads to virtually no consequences for both our
results and the precision of the estimated risk parameters, such that we conclude
that σ̂ε is also able to capture possible autocorrelation sufficiently.

Other issues regarding the quality of utility model selection concern the like-
lihood function logL(∆t(Uk|θ̂k)) and its susceptibility to overfitting issues. Al-
though we control for the different number of parameters by using AICC instead
of logL(∆t(Uk|θ̂k)), we cannot be absolutely sure whether the penalization term
for additional parameters is sufficient. The inclusion of a piecewise negative expo-
nential value functional as proposed by DeGiorgi and Hens (2006), which contains
four different risk sensitivity parameters, allows us to test for the susceptibility of
the likelihood-based model selection procedure for possible overfitting issues.44 The
proposed value function added to our analysis is, accordingly, defined as a piece-
wise negative exponential value function with parameters set equal to the values
presented in DeGiorgi and Hens (2006) to match with parameter estimates of Tver-
sky and Kahneman (1992). If the likelihood function is prone to overfitting, then
models containing a DeGiorgi and Hens (2006) functional should end up in higher
ranks compared to models incorporating Kahneman and Tversky (1979) versions
of the value function. We find no signs of an amassment of DGH0 models in higher
ranks across all utility models; thus, an overfitting problem does not appear to be
significant.45

Since some utility models, for which we generate trading sequences in Step 3, are
nested in more general formulations, we expect that nesting utility models should
yield estimates for θ̂k statistically indistinguishably close to those constraining val-
ues under which the nested utility model coincides with a nesting one. We find that
for an increase in σε, the trading sequences shorten and our parameter estimates for
θk deteriorate; thus, due to the high standard errors and imprecision in the pref-
erence parameter estimates, nesting models are preferred to nested models even in
those cases where nested models represent the true underlying utility model (see
Table (7)). We elaborate above that our simulations reveal signs of shortcomings

in the functionality of the applied search algorithm and the reliability of θ̂k|n,t.
These drawbacks compromise not only the obtained likelihood maxima and the
information criteria, based upon which the ranking of models takes place, but they

44These authors mention that this functional form should offer a higher descriptive power with
respect to the behavior of investors in financial markets than other functions, since this form
is explicitly designed to capture the features of decreasing marginal utility if financial outcomes

reach the edges of the return distributions. They argue that marginal utility stemming from the
value function is still decreasing at the bounds of the return distribution, whereas the usually

applied form of Kahneman and Tversky (1979) is virtually linear in the realm of higher stakes.
45In those cases where the DGH0-type is not the true model, the average rank for DGH0

utility model ranges between 12.4 (median rank: 11) for EUT and 7.2 (median rank: 7) for SPT .

P -values from the Wilcoxon signed-rank tests range from 0.024 for EUT up to 0.051 for SPT ;

thus, the average ranks of the two models are at least significantly distinct on a 10%-significance
level.
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also affect the precision of our estimators. If we expect some deviations from the
implicitly inherent constraining parameter constellations in terms of θ̂k, then we
obtain a ranking of utility models where nesting models should prevail in the upper
ranks.

A closer inspection of Table (7) reveals, for an increase in the dispersion of the
error term (increase in σε), a tendency toward RDU , where EUT is the correct
underlying model. Likewise, we detect a tendency to select exponential power
functionals over power-functionals, which implies that the scaling parameter ρ in
the EXPO utility functional is significantly distinct from zero—the case where
EXPO coincides with CRRA.46 We find that in those cases where the expo-power
function obtains the top rank, the scaling parameter ρ is significantly different from
zero according to a t-test (p-value 0.031), an indication that the expo-power func-
tion does not coincide with a CRRA utility, although we would expect ρ not to be
significantly distinct from zero.47 The tendency to rank nesting utility models to
nested models if the true underlying roundtrip sequence is determined by a nested
utility model also carries over to the case of non-expected utility investor trading
decisions. For instance, if the decision process is determined by RDU preferences
with a CRRA value function and decision weights according to (A.6), we detect

significant differences of θ̂RDU from the true parameterization θRDU . For exam-
ple, for EUT , we expect γ to be close to 1, as EUT and RDU coincide if γ = 1 and
for RDU , parameter γ should range near 0.65; however, in cases where EUT is the
true utility model but RDU obtains the highest rank, γ is near 1 (mean value for γ
is 0.92), but the hypothesis that γ is 1 is rejected at a 5%-significance level (p-value

0.049 according to an independent t-test). The decision weight ω(p̂j,t|θ̂RDU ) seems
to capture parts of the risk aversion of the EUT model as estimates for δ are close
to risk neutrality (p-value 0.122). Consequently, log(L(∆t(URDU |θ̂RDU ))) obtains
higher values than the corresponding likelihood function of EUT , although EUT
is the true underlying utility model. In conclusion, the likelihood measure seems to
identify models that are close to the true model, but are disturbed by the inherent
imprecision of the parameter estimates of the expo-power function being signifi-
cantly different from zero.

7. Conclusion

Focusing on the preferences of private investors in stock markets is fundamental
to any research in finance. In particular, we would like to understand why individu-
als act in the way they do and we would like to assist them by providing normative
guidelines toward better (or optimal) behavior. Financial theory implicitly assumes
utility maximization to obtain pricing kernels, from which standard tools, such as
stochastic discount factors, can be deployed to better understand how securities
are priced and which class of investor assets are considered most valuable. To trace

46Note that the correct specification is a CRRA utility function such that

logL(∆t(UEUT |θ̂EUT )) is theoretically close to zero. We model the expected utility case

explicitly using CRRA as a ranking tendency toward expo-power utility, which may strengthen
our conjecture that nesting models are systematically preferred. Inspecting the log-likelihood

values and the information criterion of our simulations, the best-fitting model reveals an AICC

indeed fairly close to zero (a small differential is due to sample size and parameter correction), a
result that is independent from the period for which we calculate returns, which is a result of the

inherent horizon independence of CRRA utility models (Merton (1969)).
47In this case, the solution would be acceptable if this estimator were not significantly different

from zero, since it would imply that CRRA is the true model.
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an arc from the literature on investor behavior in financial markets to methods de-
veloped and applied in experimental economics, we first present a short summary
on what we know about preferences and utility functions in financial markets and
from where potential future streams of literature may spring. Then, we present
and adopt a popular and frequently applied econometric method from experimen-
tal economics, namely, likelihood estimation and an application for model selection
purposes. We check, based on a simulation study, whether a naive implementation
of this method provides reliable results to address the research question, that is, to
what extent it allows us to identify the correct utility model.

We find that for a very broad classification of utility models, this method pro-
vides acceptable outcomes. Yet, a closer look at the preference parameters reveals
several caveats that come along with typical issues attached to financial data, and
these issues may drive our results. In particular, deviations are attributable to
effects stemming from multicollinearity and its concurrent parameter identification
problems, where some of these detrimental effects can be captured up to a certain
degree by adjusting the error term specification. Furthermore, additional uncer-
tainty stemming from changing market parameter estimates affects the precision
of our estimates for risk preferences and cannot simply be remedied by using a
higher standard deviation of the error term or a different assumption regarding
the stochastics of the error term. In particular, if the variance of the error term
becomes large, we detect a tendency to identify SPT as the utility model providing
the best fit to data. We also find that a frequent issue, namely, serial correlation
of the residuals, does not seem to be significant. However, we detect a tendency to
prefer nesting models over nested utility models, which is particularly prevalent if
RDU and EXPO utility models are estimated along with EUT and CRRA utility
models.
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Appendix A. Utility Functions used in the Simulation Study

To substantiate the set of utility functions that specifies ∆(Uk|θk), we consider
several utility functions frequently used in the literature. For an expected util-
ity-type investor (EUT), the preference over the risky outcomes of the stock are
modeled as

UEUT (Wt|θEUT ) =

t+1∑
j=1

p̂j,tuEUT (Wt|θEUT ), (A.1)

where p̂j,t denotes the respective probabilities associated with the respective state.48

We denote the utility functional as uEUT given the expo-power specification pro-
posed by Saha (1993)49

uEUT (Wt|θEUR) = 1− e−ρ(WtR̂
t−j+1
U,t R̂j−1

D,t )1−δ
ρ−1, (A.2)

where ρ governs relative and δ governs absolute risk aversion such that the term
uEUT (Wt|θEUT ) exhibits the properties of DARA for 1−δ below unity and captures
the behavior of CRRA if 1−δ = 1 and IARA for 1−δ above 1. Regarding parameter
ρ, functional (A.2) displays features of DRRA for ρ < 0 and IRRA if ρ > 1 (see
also Saha et al. (1994), footnote 2). It is well established that uEUT (Wt|θEUT )
converges to CRRA utility if ρ approaches zero. To benchmark this case and to
test for the hypothesis that the imprecision in estimating risk parameters is due
to multicollinearity and its favoring of nesting utility, we explicitly model CRRA
utility, where we specify the utility functional as

uEUT (Wt|θEUT ) = (WtR̂
t−j+1
U,t R̂j−1

D,t )1−δ(1− δ)−1. (A.3)

Note that for δ = −1, expression (A.3) covers mean–variance preferences (see for a
proof Back (2012); for other characteristics regarding δ see Gollier (2001)).

To capture the possible existence of generalized expected utility theories, we also
consider an investor with rank-dependent utility (RDU) according to Quiggin (1993)
and Wakker (1994), where the utility obtained from the risky asset is explicated as

URDU (Wt|θRDU ) =

t+1∑
j=1

πj,t(∆ω(p̂j,t|θRDU ))uRDU (Wt|θRDU ). (A.4)

To return from this generalized version to expected utility as presented above, we
use the utility functionals as presented in equations (A.2) and (A.3) and define
the decision weights πj,t(ω(p̂j,t|θRDU )) as decumulative probability transformation
functions according to Abdellaoui (2000) in the specification of the econometric
model, to keep our results comparable to experimental evidence.50 The probability

48Technically, we specify the state probabilities as p̂j,t =
(t+1
j

)
p̂t−j+1
t (1− p̂t)j−1. In an earlier

version of our program, we calculated the respective values of p̂j,t using Feller’s famous Reflection

Principle (Feller (1968)) as p̂j,t =
[(t
j

)
−
( t
j−1

)]
p̂t−j+1
t (1 − p̂t)j−1. In testing our program, we

find virtually no differences in the generated results between both specifications, such that we
opted for the simpler binomial version of p̂j,t.

49In the original paper, Saha (1993) suggests an exponential-power utility functional

uEUT (Wt|θEUT ) = c− e−ρ(WtR̂
t−j+1
U,t

R̂
j−1
D,t

)δ
where δ and ρ are the respective parameters of

this functional and c denotes a constant. As Saha remarks (p. 906), setting c = 1 does not play a

role in the characterization of risk attitudes or choices. In current research on asset pricing, this
constant is usually set equal to zero and thus ignored.

50More precisely, the decision weights are specified as πj,t(∆ω(p̂j,t|θRDU )) = ω
(∑t+1

k=j p̂k,t

)
−

ω
(∑t+1

k=j+1 p̂k,t

)
for j ≤ t and for the highest node πj,t(∆ω(p̂j,t|θRDU )) = ω (p̂t+1,t) for

j = t+ 1. In an earlier version of our program, we also implemented the logically equivalent
representation with a cumulative probability transformation function πj,t(∆ω(p̂j,t|θRDU )) =
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transformation function ω(p̂j,t|θRDU ), for which we identify two dominantly used
versions from the experimental literature represents a central ingredient of RDU.
Following the original article of Quiggin (1982), the decision weights are adapted
from Karmarkar (1978) and Karmarkar (1979) and defined as

ω(p̂j,t|θRDU ) = p̂γj,t(p̂
γ
j,t + (1− p̂j,t)γ)−1. (A.5)

It is noteworthy that the decision weights sum up to 1 and depend on the ranking
of the payoffs of the risky asset, even for γ 6= 1. Further, if γ is equal to 1, RDU
converges to EUT and the usual characterizations apply (Levy and Levy (2002a)).
Studies on the impact of probability weighting, such as Barberis and Huang (2008)
and Barberis (2012), instead impose a nonlinear weighting scheme, which can be
reflected by the specification of πj,t(ω(p̂j,t|θRDU )) as in Kahneman and Tversky
(1979), explicitly stated in Tversky and Kahneman (1992), and used in Wu and
Gonzalez (1996) whereas

ω(p̂j,t|θRDU ) = p̂γj,t(p̂
γ
j,t + (1− p̂j,t)γ)−

1
γ , (A.6)

in which the decision weights do not sum to unity. Note that the utility func-
tional uEUT (Wt|θRDU ) remains the same as defined in EUT, since RDU reduces
to expected utility if there is no probability weighting (e.g., if γ = 1 such that
πj,t(p̂j,t|θRDU ) = p̂j,t ∀ p̂j,t ∈ (0, 1)).

As mentioned, some empirical studies on financial decision making suggest that
there is some evidence that Prospect Theory may be at work in financial markets
such that it seems advisable to model an investor’s preferences toward financial
outcomes according to the original formulation of prospect theory, namely simple
prospect theory (SPT) as

USPT (Wt,WRP |θSPT ) =

t+1∑
j=1

πj,t(ω(p̂j,t|θSPT ))uSPT (Wt,WRP |θSPT ), (A.7)

where WRP marks a reference point (Kahneman and Tversky (1979)), assuming
that preferences of the individual investor are based on changes of the initially
invested wealthW0 (for deviating reference points in stock markets such as historical
extrema in prices Grinblatt and Keloharju (2001b), Garvey and Murphy (2004) or
expectations Meng (2010)) and in which the decision weights πj,t(ω(p̂j,t|θSPT )) are
defined for each possible state (Kahneman and Tversky (1979)).51 In the original
formulation of Kahneman and Tversky (1979) and as adapted in studies on various
issues in finance (Berkelaar et al. (2004) with curvature parameter equal to 1,
Berkelaar and Kouwenberg (2009), Kliger and Levy (2009) and others) the value
function is captured by a power functional uSPT (Wt|θSPT ) of the form

uSPT (Wt,WRP |θSPT ) = λI[∆Wt<0](|WtR̂
t−j+1
U,t R̂j−1

D,t −WRP |)α, (A.8)

where I[∆Wt < 0] represents an indicator taking the value of 1 if the change in

wealth, measured as difference from the reference point ∆Wt = WtR̂
t−j+1
U,t R̂j−1

D,t −
WRP , is negative and zero otherwise, indicating states where losses, weighted with
loss aversion parameter λ, occur.

ω
(∑t+1

k=j p̂k,t

)
− ω

(∑t
k=j p̂k,t

)
for j > 1 and πj,t(∆ω(p̂j,t|θRDU )) = ω (p̂1,t) for j = 1 as

in the original formulation of RDU according to Quiggin (1982) and Quiggin (1993). A test of our

program reveals that the respective formulation of the decision weights appears to have no impact

on our results, such that we refrain from an explicit distinction between these two possible cases.
51In detail, we establish a logical connection to RDU and define the decision weights as πj,t =

ω
((∑t+1

k=j p̂k,t

)
−
(∑t+1

k=j+1 p̂k,t

))
∀j.
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Some financial studies, such as Barberis et al. (2001), Gomes (2005) and Barberis
and Huang (2008) model the demand of SPT-type investors according to a different
form of the value functional and apply a mathematical construct similar to CRRA
utility, specified as

uSPT (Wt,WRP |θSPT ) = λI[∆Wt<0](|WtR̂
t−j+1
U,t R̂j−1

D,t −WRP |)1−δ(1− δ)−1. (A.9)

It should be noted that, as in Barberis et al. (2001) and Barberis and Huang (2008),
the individual’s consumption enters as arguments, although other variables and
fundamentals may be considered (e.g., Barberis and Xiong (2009)). For cumulative
prospect theory (CPT), we calculate the utility of the financial prospects according
to Tversky and Kahneman (1992) as

UCPT (Wt,WRP |θCPT ) =

t+1∑
j=1

πj,t(∆ω(p̂j,t|θCPT ))uCPT (Wt,WRP |θCPT ), (A.10)

with value functionals as defined in (A.8) and (A.9). Characteristic for CPT and
distinct from SPT, the difference of the probability weighting functions ω (p̂j,t)
constitute rank-dependent decision weights as a decumulative function of the state-
specific decision weights in the domain of losses and as a cumulative function of the
state-specific decision weights if the investor’s position in the risky asset generates
positive returns (Fennema and Wakker (1997)).52 It is noteworthy that for SPT and
CPT, these decision weights sum to 1 if specified according to (A.5) and are usually
subadditive under formulation (A.6) for γ < 1. Concerning uCPT (Wt,WRP |θCPT ),
we use the same specification as for the original version of Prospect Theory.

Appendix B. Remarks on the Maximum Likelihood Approach

As elaborated, experimental studies maximize the overall likelihood of an in-
vestor or decision maker, given the assumption of stochastically independent error
terms yielding the likelihood function for a utility model of type k, expressed as

logL(∆t(Uk|θk)) =
∑
t∈T

∑
I∈Ik,t

Ik,t log pIk,t(∆t(Uk|θk)),

in which it is required that ∆t(Uk|θk) is a one-to-one relationship connecting the
functional values to particular values of θk and where pIk,t(∆t(Uk|θk)) denotes the
respective conditional probabilities as defined in (3.3). To clarify notation and pro-
vided there exists a unique solution to the maximizing problem within the possible
range of θk, maximizing the likelihood function (B.1) for a given sample and time

periods t ∈ {1, . . . , T} returns a maximum likelihood estimate θ̂k|n,t, depending on

the sample size, of the true but unknown parameter θ̂k, briefly denoted as

θ̂k|n,t = arg max
θk∈θk

logL(∆t(Uk|θk)). (B.1)

Accordingly, the obtained estimator θ̂k|n,t is characterized by the usual standard
conditions concerning the score vector S(∆t(Uk|θk)), which should be equal to a
zero vector, and the Hessian matrix H(∆t(Uk|θk)), consequently being positive

52To be more precise, for CPT the decision weights are formulated as decumulative function

πj,t = ω
(∑j̄

k=1 p̂k,t

)
− ω

(∑j̄−1
k=1 p̂k,t

)
∀j < bj̄c and πj,t = ω (p̂1,t) if j = 1 for positive returns

and specified as cumulative function πj,t = ω
(∑t+1

k=j̄
p̂k,t

)
− ω

(∑t+1
k=j̄+1

p̂k,t

)
∀j > bj̄c and

πj,t = ω (p̂t+1,t) if j = t + 1 in the domain of losses where j̄ denotes the break-even node that

classifies a state to be only in the realm of negative returns.
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definite. Ignoring σε for a moment and following Edwards (1992), the score vector
S(∆t(Uk|θk)) is

S(∆t(Uk|θk)) =
∑
I∈Ik,t

δ(Uk|θk)S(∆t(θk)) (B.2)

where we use the abbreviation δt(Uk|θk) to denote the square matrix of first deriva-
tives of ∆t(Uk|θk) with respect to each of its parameters and denote the (Kk × 1)
vector of outer derivatives of the likelihood function as S(∆t(θk)), being the prod-
uct of a diagonal matrix I with elements Ik,t/pIk,t and the diagonal matrix PI con-
taining the outer derivatives of pIk,t . Following this notation, the Hessian matrix
H(∆t(Uk|θk)) consists of two terms, namely a matrix containing partial deriva-
tives of the elements of δ(Uk|θk) and a matrix collecting the second derivatives of
∆t(Uk|θk) with respect to its parameters (see Edwards (1992) for details).53

To obtain the Information matrix I(∆t(Uk|θ̂k), the sign of the Hessian needs to
be reversed and taken by its expectations, where we can use the fact that E(Ik,t) =
pIk,t . Since the sum of the choice probabilities equals 1

∑
I∈Ik,t pIk,t = 1, the last

term of the Hessian vanishes if evaluated at θ̂k such that the last term can be
greatly simplified (Fisher (1956), Edwards (1992), Theorem 7.2.2) to

I(∆t(Uk|θ̂k)) =
∑
I∈Ik,t

δ(Uk|θk)I(∆t(θk))δ(Uk|θk)
′
. (B.3)

Here, δt(Uk|θk) denotes the square matrix of first derivatives of ∆t(Uk|θk) with

respect to each of its parameters and I(∆t(θk)) = PIP
′

II being the product of a
diagonal matrix I with elements Ik,t/pIk,t and the diagonal matrix PI containing
the outer derivatives of pIk,t . It is evident from this structure that for each Ik,tth

term, the Hessian is a positive semi-definite matrix since I(∆t(θk)) = PIP
′

II is
symmetrical. Disregarding the possibility that H(∆t(Uk|θk)) is singular, the Hes-

sian is in fact positive definite. This implies that I(∆t(Uk|θ̂k)) is also a positive

definite matrix over reasonable values of θ̂k.

Appendix C. The Akaike Information Criterion and Model Tests used

According to the likelihood approach described above, it can be shown that a
connection to the Akaike Information Criterion (Carbone and Hey (1994), Hey
and Orme (1994), Carbone and Hey (1995) and Stott (2006)) can be established
and used to identify the best-fitting utility function specification. To sketch this
idea, recall that logL(∆t(Uk|θk)) is continuous in θk and twice differentiable.54 A

second-order Taylor-expansion of the log-likelihood (B.1) around θ̂k yields

logL(∆t(Uk|θk)) ≈ logL(∆t(Uk|θ̂k)) + Sk|n,t(∆t(Uk|θ̂k))+

+Hk|n,t(∆t(Uk|θ̂k))(∆t(Uk|θ̂k|n,t)−∆t(Uk|θ̂k)).
(C.1)

53Note that due to the independence assumption, each element of the score vector and the Hes-
sian matrix consist of a series of sums. This is not surprising since, according to the independence

assumption across time and choice sets, the log-likelihood function inherits the regularity property
in the sense that differentiation and summation are interchangeable (e.g., Cramer (1986)), which

in turn carries over to the entire sample if it holds for any single observation.
54As for the derivatives of, for example, SPT towards some elements of θk, the derivative is not

defined for some combinations of R̂S,t. Under a nonlinear probit model such as ours, the normal
distribution is continuous, and given that summation and differentiation are interchangeable, the
probability that those critical combinations appear converges to zero and thus can be ignored.
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If this expression is evaluated at θ̂k, the score vector Sk|n,t(∆t(Uk|θ̂k)) equals zero
and the Hessian can be rewritten as

logL(∆t(Uk|θk)) ≈ logL(∆t(Uk|θ̂k))−

− 1

2
nt(∆t(Uk|θ̂k|n,t)−∆t(Uk|θ̂k))

′
I(∆t(Uk|θ̂k))(∆t(Uk|θ̂k|n,t)−∆t(Uk|θ̂k)).

In this step, we make use of the fact that

E{nt(∆t(Uk|θ̂k|n,t)−∆t(Uk|θ̂k))
′
I(∆t(Uk|θ̂k|n,t))(∆t(Uk|θ̂k|n,t)−∆t(Uk|θ̂k))}

≈ tr(J(∆t(Uk|θ̂k|n,t))I(∆t(Uk|θ̂k|n,t))−1),

(C.2)

as shown elsewhere (Bozdogan (2000), Pawitan (2001)). J(∆t(Uk|θ̂k|n,t)) con-
tains the product of the score vectors (Cramer (1986)) and can be written as

J(∆t(Uk|θ̂k|n,t)) = E(Sk|n,t(∆t(Uk|θ̂k))Sk|n,t(∆t(Uk|θ̂k))
′
) and where tr denotes

the trace of the product of the matrices within the brackets. Taking expectations,
by (C.2), expression (C.1) can be rewritten as

ntL̄(∆t(Uk|θk)) ≈ E(logL(∆t(Uk|θk)))−1

2
tr
(
J(∆t(Uk|θ̂k|n,t))I(∆t(Uk|θ̂k|n,t))−1

)
.

If the number of observations or traded stocks increases beyond all bounds of
the number of days t grows, according to Cramer (1986), J(∆t(Uk|θ̂k|n,t)) ≈
I(∆t(Uk|θ̂k|n,t)), such that tr

(
I(∆t(Uk|θ̂k|n,t))I(∆t(Uk|θ̂k|n,t))−1

)
, being the di-

mension of θk, which is approximately equal to the number of parameters Kk of
the respective utility model under consideration. Stated differently,

L̄(∆t(Uk|θk)) ≈ −2 logL(∆t(Uk|θ̂k))

nt
+

2Kk

nt

which is the information criterion according to Akaike (1974) in the representation
of Amemiya (1980) as stated above, where we correct for the different number of
observations by nt. To contrast the results of the AIC by a finite correction version
of Sugiura (1978) and Hurvich and Tsai (1989), we also invoke the corrected AIC,
abbreviated as AICC, as

AICC = −2 logL(∆t(Uk|θ̂k))

nt
+

2Kk

nt
+

2Kk(Kk + 1)

nt(nt−Kk − 1)
. (C.3)

This form is usually recommended if the number of observations does not outweigh
the number of parameters by more than a factor of 40 (Burnham and Anderson
(2004)).

One serious drawback of the AIC, AICC, or basically any information criterion,
is the fact that it, per se, cannot provide significance levels or statistical statements
about how good the discrimination between the two competing models actually
is.55 To obtain the usual significance levels and to retrieve further information

55Further, if two utility specifications, for instance model-k and competing model-m, share
the same number of risk preference parameters, then sorting them according to AICC leads to

a selection of one model against the other. However, we find that, in some cases, where the

highest AICC is not close to zero, the order in which these models are sorted can be due to a
sufficiently small difference in the obtained log-likelihood, where the correction for the number of

parameters strongly affects the ranking and overcompensates the difference in the log-likelihood.

We check the ranking of utility models and use the Schwartz Information Criterion (also known
as Bayes Information Criterion (Schwarz (1978))) as well as the original AIC. Since the penalty of

a higher number of parameters according to the Schwartz Information Criterion is higher, we find

that this effect is aggravated, though it affects the results only in exactly those cases pointed out
above. In light of such deficiencies, to validate the obtained position, we supplement the results
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about the likelihood, the ranking according to the AICC is supplemented by the
usual statistical tools made available by likelihood theory. For nested models where
model k nests m, the usual likelihood ratio test can be applied (Kent (1982)).
According to the null hypothesis H0, both models are equally good in fitting the
observed data such that the unconstrained maximum of logL(∆t(Uk|θ̂k)) should

be close to the constraint maximum logL(∆t(Um|θ̂m)). The likelihood ratio test
is calculated as

LRnt(θ̂k, θ̂m) = −2 ln

[
L(∆t(Ui|θ̂k))

L(∆t(Ui|θ̂m))

]
where under H0 : LRnt(θ̂k, θ̂m)

L→ χ2
dfk,m

(C.4)
for which it is well established that this ratio is non-negative and under H0 asymp-
totically chi-square distributed with degrees of freedom dfk,m equal to the number of
parameters of the unconstrained model minus the number of parameters of the con-
strained model (for a proof see, e.g., Rao (1973)). To derive p-values for contrasting
non-nested models such as CRRA and CPT given W0(RP ), we apply a non-nested
likelihood ratio test according to Vuong (1989), their Theorem 5.1., where we de-
note the maximized likelihood values of competing models k and m, respectively.
Vuong’s contribution is to show that under general conditions and given that the
null hypothesis holds, the expectations of the log-ratio of the two maximized like-
lihoods (L(∆t(Uk|θ̂k))) and (L(∆t(Um|θ̂m))) for two competing models k and m
should be zero. The expectations can be consistently estimated by the average of
the likelihood ratio statistic over nt observations such that given the null hypothesis
that the log of the likelihood ratio has an expectation of zero

LRnt(θ̂k, θ̂m)

(
√
nt)ŵnt

d→ N(0, 1) with
1

nt
LRnt(θ̂k, θ̂m)

L→ E0

[
ln

L(∆t(Uk|θ̂k))

L(∆t(Um|θ̂m))

]
.

where ŵ2
nt ≡

1

n

∑
i=1

nt

[
ln

L(∆t(Uk|θ̂k))

L(∆t(Um|θ̂m))

]2

−

[
1

nt

nt∑
i=1

ln
L(∆t(Uk|θ̂k))

L(∆t(Um|θ̂m))

]2

.

(C.5)

for which it is shown that the resulting likelihood ratio statistic is asymptotically
normally distributed.56 If the time series is long enough, the asymptotic properties
might hold on the individual level as well.57
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