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Abstract

This paper provides a systematic analysis of individual attitudes towards ambiguity,
based on laboratory experiments. The design of the analysis allows to capture individual
behavior across various levels of ambiguity, ranging from low to high. Attitudes towards
risk and attitudes towards ambiguity are disentangled, providing pure measures of ambi-
guity aversion. Ambiguity aversion is captured in several ways, i.e. as a discount factor
net of a risk premium, and as an estimated parameter in a generalized utility function.
We find that ambiguity aversion varies across individuals, and with the level of ambigu-
ity, being most prominent for intermediate levels. Around one third of subjects show no
aversion, one third show maximum aversion, and one third show intermediate levels of
ambiguity aversion, while there is almost no ambiguity seeking. While most theoretical
work on ambiguity builds on maxmin expected utility, our results provide evidence that
MEU does not adequately capture individual attitudes towards ambiguity for the major-
ity of individuals. Instead, our results support models that allow for intermediate levels
of ambiguity aversion. Moreover, we find risk aversion to be statistically unrelated to am-
biguity aversion on average. Taken together, the results support the view that ambiguity
is an important and distinct argument in decision making under uncertainty.
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1 Introduction

In this paper, we use laboratory evidence to analyze how ambiguity in the sense of multiple

priors about lottery payoffs affect the valuation by participants. The new feature of the experi-

mental design refers to a systematic variation of the set of priors, ranging from very low to very

high levels of ambiguity. Subjects are also facing ambiguity-free, and otherwise identical tasks,

allowing to estimate, for each subject, a metric capturing pure ambiguity aversion. Reservation

prices are elicited using the Becker-DeGroot-Marschak (BDM) mechanism, thereby avoiding

strategic considerations in the subjects’ bidding process. The robustness of this approach is

analyzed with binary-choice lists. The experimental design elicits a fixed number of reference

points, in terms of different priors, allowing to estimate a utility function involving risk and

uncertainty. This setup is well suited to compare the descriptive validity of existing models of

choice under risk and uncertainty. Two prominent models are the Maxmin Expected Utility

model (Gilboa and Schmeidler, 1989) and the Smooth Preferences model (Klibanoff, Marinacci,

and Mukerji, 2005). While the former assumes extreme aversion to ambiguity, the latter allows

for intermediate levels of ambiguity aversion.

The experimental evidence presented in this paper broadly supports the idea of a sepa-

rate argument in the utility function capturing the individual’s aversion towards ambiguous

prospects. In particular, we find individual ambiguity-related discounts to vary across different

levels of ambiguity, after netting out any discount that is due to risk aversion. We then analyze

whether or not a systematic relationship between pure ambiguity aversion on the one side and

pure risk aversion on the other side can be found in our data.

Based on ’local’ experimental evidence, that is evidence based on narrow ranges of ambiguity

levels, a debate on a possible collinearity between risk preference and ambiguity preference has

arisen in the literature (Chew et.al. 2012, Bossaerts et.al. 2009, Abdellaoui et.al. 2011,

Dimmock et.al. 2012), with some authors suggesting even near-redundancy of an ambiguity

aversion metric (Charness et.al. 2013). However, based on ’global’ evidence, that is evidence

based on a broad range of ambiguity levels, we find a significant and independent role for

an ambiguity aversion parameter, supporting the claim that ambiguity aversion is a relevant

characteristic of human behavior. To estimate the determinants of ambiguity, we use a panel

specification, and regress the observed pure ambiguity discount on the pure risk discount.

The ’global’ range of ambiguity levels in our experimental design allows estimating the func-

tional form from observed individual data points. We specify two different models of ambiguity

aversion which have been proposed in the literature. One such model predicts a kinked shape

of the ambiguity aversion function, where aversion to ambiguity is binary - either complete, or

not all. Other prominent formalizations tolerate intermediate levels of aversion. We find that

the majority of subjects have positive levels of ambiguity aversion, but not as extreme as pre-

dicted by Maxmin Expected Utility. Pure ambiguity aversion is in fact increasing in ambiguity

as captured by our metric. In relative terms, we find increasing ambiguity aversion to prevail

most of the time. In particular, we find decreasing-to-constant relative ambiguity aversion for

the median bidder in all sessions. The impact of ambiguity on the observed discount is quite
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substantial, reaching a maximum value of 67% for the median bidder at one (intermediate)

level of ambiguity.

The remainder of the paper is structured as follows. First, the literature on modeling

ambiguity is surveyed (Section 2), followed by a description of the experimental design (Section

3). Results are contained in Section 4, distinguishing between (discrete) binary choices and

(continuous) monetary valuations. These valuations are used to estimate parameters of risk

aversion and ambiguity aversion for individual persons and to analyze how attitudes towards

risk and ambiguity interrelate. Section 5 summarizes and discusses the findings.

2 Ambiguity in the Theoretical and Experimental Lit-

erature

Starting with Knight (1921) and Keynes (1921), there is an exponentially growing literature on

decisions under risk and uncertainty. Savage (1954) and von Neumann and Morgenstern (1944)

lay the foundation on modern decision theory. Their system of axioms clarify, under which

conditions subjective probabilities and a Bernoulli risk adjusted utility function exist. Ellsberg

(1961) shows in a simple thought experiment that human decisions are more complex than

implied by the Savage axiom system. The so-called Ellsberg Paradox is the flash of inspiration

for new developments in economic decision theory, empirical and experimental research. The

literature will be summarized briefly.

2.1 Theory

There are many different theories of rational decision making under ambiguity. The axiomatic

approach of all theories make some changes of the original axioms of Savage (1954) (subjective)

expected utility Theory (SEU), especially on the independence axiom (IA).

Axiom 1 (IA) for all acts f, g, h: f � g ⇔ αf + (1− α)h � αg + (1− α)h

If, for the preference relation, the usual axioms hold, including the above independence

axiom (IA), then there exists a utility function u and a unique subjective probability distribution

p (a priori) with:

f � g ⇔ u(f) ≥ u(g) (1)

where

u(f) = Ep[u ◦ f ], (2)

i.e. the total utility is given as expected value of individual utility values u of possible

outcomes f , weighted with the corresponding probability p. Rational decision making then

involves choosing the act f that maximizes utility, i.e. maxf u(f).
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The Ellsberg (1961) paradox provides evidence that in the presence of ambiguity, the Savage

(1954) utility theory does not work. Assuming that the validity of the independence axiom

does not hold unconditionally, but is limited to certain conditions, leads to a different theory

of rational decision making.

Gilboa and Schmeidler (1989) consider a setting where IA only holds for sure h. They

replace IA by C-IA where h is restricted to sure gambles and add a new axiom called uncertainty

aversion, i.e. if f ∼ g then αf + (1− α)g � f . They obtain maxmin-expected utility (MEU),

where the set C of possible probability distributions (a priori) is given exogenously:

u(f) = min
p∈C

Ep[u ◦ f ]. (3)

Maxmin-expected utility (MEU) involves choosing the act f that maximizes utility while

assuming the worst possible probability distribution. Thus, MEU involves extremely negative

attitudes towards ambiguity.

Translating the concept of Laplace (1820) to situations involving ambiguity, subjects have a

neutral attitude towards uncertain outcomes, i.e. they will treat all possible outcomes equally.

Thus, we will refer to neutrality towards ambiguity as Laplace-expected utility (LEU), i.e. SEU

with Laplace (1820) attitudes. The corresponding utility can be represented as follows:

u(f) = E[Ep[u ◦ f ]]. (4)

There exist some generalizations of the MEU model. A more flexible model of ambiguity

than MEU is the α-MEU model (see Ghirardato et al., 2004). According to this theory, sub-

jects value uncertain alternatives by the minimum expected utility with weight α and by the

maximum expected utility with weight 1− α:

u(f) = α(min
p∈C

Ep[u ◦ f ]) + (1− α)(max
p∈C

Ep[u ◦ f ]) (5)

A generalization of MEU is the concept of Variational Preferences, defined by Maccheroni,

Marinacci and Rustichini (2006):

min
p∈C

(Ep[u ◦ f ] + c(p)), (6)

where c is an ambiguity index on the set of probabilities and can be interpreted as a cost

function.

Klibanoff, Marinacci, and Mukerji (2005) introduce “Smooth Preferences” (SP) where µ

is a subjective probability on the set of (objective) probability measures p. Thus, µ can be

regarded as a second order probability. The normal linear reduction is not possible because

KMM postulate a concave function: ∫
C

φ(Ep[u ◦ f ])dµ(p) (7)
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In contrast to the other theories, the indifference curves are not kinked at the sure state

(45◦ degree line).

Schmeidler (1989) introduces Choquet expected utility (CEU) with capacity v, a nonadditive

measure. This allows the sum of the probabilities to deviate from one. In general, CEU differs

from MEU, but with a suitable choice of v, CEU gives the same decision rule:∫
Ep[u ◦ f ]dv (8)

Siniscalchi (2009) presents vector expected utility (VEU) with an ambiguity adjustment

function A. The adjustment factors ζi represent different sources of ambiguity:

Ep[u ◦ f ] + A ((E[ζi · u ◦ f ])0≤i<n) (9)

The above models can be considered as special cases of VEU.

Bewley (2002) chooses a different point of view. Following Aumann (1962), he composes

a system of axioms without the completeness axiom, i.e. allowing incomplete preferences.

Alternatives are then incomparable and an inertia assumption is needed. Gilboa et al. (2010)

shows the connection between the approach of Bewley (2002) and MEU theory.

The theoretical discussion is actively going on, as evidenced by Galaabaatar and Karni

(2013).

2.2 Ambiguity in experimental economics

Camerer and Weber (1992), Epstein and Schneider (2008), and Trautmann and van de Kuilen

(2013) provide excellent surveys of the relevant literature. The empirical papers on ambiguity

may be classified by their experimental design, findings related to ambiguity aversion, and

approaches to external validity. Most studies rely on design variants of the original Ellsberg

urn model, eliciting reservation prices in either hypothetical or incentivized tasks, often relying

on the Becker-DeGroot-Marschak mechanism.

Becker and Brownson (1964), Sovic and Tversky (1974), MacCrimmon and Larson (1979),

Einhorn and Hogarth (1986), and Curley and Yates (1989) support the Ellsberg Paradox and

find an ambiguity discount. Furthermore, they find that the ambiguity discount increases with

the range of possible outcomes, and there is only little correlation between ambiguity aversion

and (normal) risk aversion. Subjects show more ambiguity aversion if the gamble they choose

was revealed in front of others. Einhorn and Hogarth (1985) propose a model where subjects

anchor ambiguous probability on a focal point and adjust upward or downward.

Halevy (2007) designs an experiment with 4 urns containing red and black balls. Urn 1

contains 5 red and 5 black balls. The composition of Urn 2 is unknown and the composition

of Urn 3 is drawn from a uniform distribution. Urn 4 contains either 0 or 10 red balls with

equal probability. The subjects have to evaluate the urns by a BDM mechanism. Urn 1 and 2

is the original Ellsberg (1961) two-urn experiment, with Urn 2 involving ambiguity. Urn 3 and
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4 represent compound lotteries, where the composition of the urns is determined by a lottery

with known probabilities. The experiment demonstrates that attitudes towards ambiguity

and compound objective lotteries are tightly associated. Subjects who are ambiguity-neutral

correctly compound subjective and objective probabilities. The other subjects show different

forms of association between preferences over compound lotteries and ambiguity.

Danan and Ziegelmeyer (2006) test experimentally the completeness axiom (see Bewley

(1986/2002)) and state empirical evidence that most subjects show incomplete preferences.

Ahn et al. (2009) test several theories of ambiguity in a portfolio choice experiment. They

find support for the α-Maxmin Expected Utility model.

Bossaerts et al. (2009) study the impact of ambiguity and ambiguity aversion on equilibrium

asset prices and portfolio holdings in competitive financial markets. They find that ambiguity

aversion matters for portfolio choices and indirectly for prices. This is in contrast to the

standard theory on asset prices. The theoretical results are supported by an experiment which

introduces ambiguous prospects in the form of shares with Ellsberg-urn properties in a market

setting. In contrast to earlier studies, they find that there is a correlation between risk aversion

and ambiguity aversion. The measure of correlation is non-standard, and therefore not directly

comparable to the rest of the literature. Cohen/Tallon/Vergnaud (2009), abstracting from

outliers, find zero correlation between risk aversion and ambiguity aversion in an individual

choice experiment.

Bleaney and Humphrey (2006) run a two-stage choice experiment. In the first treatment,

subjects have to evaluate lotteries of which they know the exact probabilities. In a second

treatment they get additionally information on frequencies. The authors state that the second

treatment contains less ambiguity because human cognitive process better information on fre-

quencies than pure mathematical probability information. In the experiment, they find that

subjects evaluate lotteries significantly higher in the second treatment than in the first. This

points to the importance of framing in the context of ambiguity.

Several more recent experiments combine the standard behavioral characteristics of risk and

ambiguity with the behavior towards time and delay, called impatience. Sutter/Kocher/Rützler/Trautmann

(2013) propose a common experimental design for all three characteristics, when subjects are

children and adolescents (12-18 years). They are able to link these characteristics to ’real be-

havior’, like the inclination to smoke, drink alcohol, behave in school, save money in a bank

account and so on. Patience turns out to be the dominant predictor of ’real behavior’, while

ambiguity aversion plays no role, despite being widely present in the population.

Charness/Karni/Levin (2013) find little support for the existence of ambiguity aversion,

suggesting it to be determined by subjects’ fear of being cheated by the experimenter when it

comes to ambiguous urns. They also find the share of ambiguity-neutral participants to rise

when social interaction during a session is allowed.

Trautmann/van de Kuilen’s (2013) survey lists a large number of individual choice experi-

ments relying on a direct comparison of risky and ambiguous choice sets (see their Table 1).

As a take-away from the literature survey we find a lack of systematic comparison across
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subjects and over time that covers different degrees of ambiguity, from low levels to high levels.

2.3 The relevance of ambiguity in applied economics

Several papers discuss how ambiguity and ambiguity aversion may directly affect market prices

of assets. Previous research already claimed that the equity premium consists of both, a

premium for risk and a premium for ambiguity (Chen and Epstein, 2002, and Cao et al., 2005).

There is a lot of theoretical research on the impact of ambiguity on asset prices, in most

cases built on maxmim expected utility (MEU) preferences, i.e. the minimum of a set of priors

is maximized by agents. Caskey (2009) shows that ambiguity can lead to persistent pricing

anomalies, such as under-reaction, over-reaction, and price momentum. It has been shown that

ambiguity may lead to agents not participating in markets (Dow and Werlang, 1992). Dow and

Werlang (1992) examine a model where portfolio managers can buy or sell (go short) an asset.

The value of the asset depends on the future state with unknown probability. They show that

there is a positive gap in the price range where the managers take a zero position, in contrast

to the standard model. Further studies show that ambiguity can affect asset prices and also

their volatility (Epstein and Wang, 1994). Epstein and Wang (1994) introduce ambiguity in an

equilibrium model with infinite horizon, based on MEU. In the model, agents act dynamically.

They show that there is a large set of equilibrium prices depending on the degree of ambiguity.

The model is extended to continuous time by Chen and Epstein (2002). They show that the

excess return of a security can be expressed as a sum of a risk premium and an ambiguity

premium. That the return is not only determined by risk aversion but also by ambiguity

aversion may in part explain the equity premium puzzle as well as the home-bias puzzle. Easley

and O’Hara (2009, 2010) show how microstructure features and market regulation can mitigate

the adverse effects of ambiguity on market participation, risk premia, and market performance.

Ambiguity is accounted for by MEU preferences. Some research deals with the connection

between ambiguity and currency exchange rates. In this line of research, Ilut (2010) provides

an explanation of the uncovered interest rate parity puzzle based on signals with uncertain

precision. In this setting, market participants are assumed to deal with ambiguity by maxmin

optimization, assuming worst-case scenarios. In macroeconomic model building we observe a

corresponding development. The model of Hansen and Sargent (2001) on robust control and

uncertainty about the right model is built on MEU.

Several studies empirically investigate the impact of ambiguity with real market data. An-

derson et al. (2009) find that ambiguity, measured by the dispersion of forecasts, has a higher

impact on asset returns than risk. Leippold, Trojani, and Vanini (2008) propose and empiri-

cally test a model that accounts for ambiguity (and Bayesian learning) and is able to match the

observed equity premium, interest rate, and volatility of stock returns. In this paper, ambiguity

aversion is accounted for in the form of maxmin expected utility optimization. There is evidence

that a substantial part of bond premia can be attributed to inflation ambiguity (Ulrich, 2011a)

and uncertainty regarding government policy (Ulrich, 2011c). Pástor and Veronesi (2011) show

that uncertainty regarding government policy increases volatility, risk premia, and correlations
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among stocks. Further evidence suggests that the volatility smile of interest rate options is

driven by macro uncertainty premia (Ulrich, 2011b). Several studies investigated the role of

ambiguity in the 2007-2008 financial crisis. Boyarchenko (2011) relates the sudden increases of

CDS spreads and the drops of equity prices in the years 2007-2008 to increasing uncertainty

about the validity of pricing models and the quality of signals available to market participants.

Moreover, it is shown that ambiguity may serve as an explanation for break-downs of markets

with collateralized assets (Rinaldi, 2011).

A main challenge for theoretical and empirical studies is the issue how ambiguity can be

defined and how it can be captured. So far, it is largely unclear how to operationalize the concept

of ambiguity in the context of real economic applications. Most theoretical and empirical

studies on ambiguity in applied economics apply rough measures of ambiguity. Most theoretical

models, on the one hand, apply the concept of MEU which implies an extreme treatment of

ambiguity, i.e. maximum aversion against ambiguity. Most empirical studies, on the other hand,

struggle with quantifying the degree of ambiguity in real-world situations. Moreover, there are

different possible techniques to measure the degree of ambiguity. Thus, a main challenge is

how to measure ambiguity in empirical settings and how a distinction between risk aversion

and ambiguity aversion can be found.

Almost all real-world situations involve ambiguity, since the true probabilities of events are

generally not known. Moreover, ambiguity is always accompanied by risk - it is the second order

of risk. Thus, real-world situations typically involve both risk and ambiguity - two concepts

that hardly can be disentangled in practice. One main advantage of laboratory experiments is

that the degree of ambiguity can be varied in a controlled way so that it is always known. This

allows a distinction between the degree of risk and ambiguity in each setting, and it also allows

to disentangle attitudes towards risk and ambiguity.

3 Experiment Design

This experiment is designed in a different way than in previous research, as the degree of

ambiguity in different situations is varied systematically, a broad range of settings or stimuli

involving ambiguity is captured, and different ways to extract attitudes towards ambiguity are

applied (binary choices and valuations via BDM). The broad setting applied allows us to detect

the effect of framing, as some situations occur repeatedly and are presented in different ways.

Table 1 shows how the experiment is organized. The experiment consists of two parts with a

total of 6 lists. Each list involves a number of situations (mostly 11) of similar type, where only

one parameter is varied in one dimension. In each situation, the participants of the experiment

are required to make a decision. Throughout the experiment, these situations are lotteries,

presented to the participants as a draw of a ball out of an urn containing 100 balls, each of

which is of a particular color. The situations differ with respect to the composition of the urn,

the information given to participants about the urn, and the possible choices to be made.

Part 1 has two lists with 11 situations each. In Part 1, the subjects are given binary choices.
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In particular, they have to choose between a lottery (alternative A) with unsure payoffs of either

0 or 10 Euros and a sure payoff of 6 Euros (alternative B). Each ball in the urn is either black

or white. A subject deciding to participate in the lottery wins 10 Euros if a white ball is drawn.

In List 1 (situations i = 1 to i = 11), the subjects are informed about the exact number of

white balls in the urn, ranging from 0 to 100. Since it is known that the remaining balls are all

black, the subjects know the exact composition of the urn.

List 2 contains situations as similar as possible to those in List 1, but the composition of the

urns is now uncertain. Subjects only know the minimum number of winning white balls is the

urns, ranging from a minimum number of 0 white balls in Situation 12 to a minimum number

of 100 white balls in Situation 22. In each case, there may be more white balls in the urn, but

the exact number is unknown. Again, subjects have to make a choice between a lottery (here

with unknown probability) and the sure payoff of 6 Euros. The columns labeled List 1 and List

2 in Table 1 give an overview of the configuration of the urns in Part 1.

Table 1: Experiment Design

This table shows the design of the experiments. In particular, it shows what the subjects know about the
composition of the urns. In Part 1, the subjects could choose whether they participate in the lottery or rather
choose a sure payment of 6 Euros. In Part 2, the subjects should indicate their reservation price at which they
are willing to sell the lotteries. The experiment is organized in six lists, where each list consists of several urns
in a particular setting. All urns contain 100 balls. The balls may be of white or black color, except for List 6,
where balls also may be red. In List 1 and 3, the exact number of white balls is known to the subjects. In List
2 and 4, the minimum number of white balls in the urns is known, and the remaining balls may be of white or
black color. In List 5, the minimum number of white and black balls in the urns is known, and the remaining
balls may be of white or black color. In List 6, the exact number of white balls in the urns is known, and the
remaining balls may be of black or red color. In the case of Lists 4, 5, and 6, the subjects have to choose the
winning color.

Part 1 Part 2
Binary Choices Valuing lotteries

List 1 List 2 List 3 List 4 List 5 List 6
No. white = No. white ≥ No. white = No. white ≥ No. white ≥ black ≥ No. white =
1 0 12 0 23 0 34 0 45 50 50 56 0
2 10 13 10 24 10 35 10 46 45 45 57 5
3 20 14 20 25 20 36 20 47 40 40 58 10
4 30 15 30 26 30 37 30 48 35 35 59 15
5 40 16 40 27 40 38 40 49 30 30 60 20
6 50 17 50 28 50 39 50 50 25 25 61 25
7 60 18 60 29 60 40 60 51 20 20 62 30
8 70 19 70 30 70 41 70 52 15 15 63 35
9 80 20 80 31 80 42 80 53 10 10 64 40
10 90 23 90 32 90 43 90 54 5 5 65 45
11 100 22 100 33 100 44 100 55 0 0 66 50

67 55

This design is called ordered binary choice list. A similar design has previously been used

by Holt and Laury (2002) for measuring risk aversion. However, in contrast to Holt and Laury

(2002), we do not alter the sure payoff, but the probability of success of the lottery. In the

risk-only setting of List 1, a subject only deciding based on his risk aversion will opt for the

sure payoff (alternative B) for Situation 1 to k, and for Situation (k + 1) to 11 he will choose

the gamble. As soon as the number of white balls in the urn surpasses a certain level, the

lottery becomes attractive in the sense that the benefits from the potential gain outweigh the

disadvantages of the risks involved. The threshold T1 = k for List 1, i.e. the number of decisions
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in favor of alternative B before switching to alternative A, depends on a subject’s risk aversion

and thus can be interpreted as a measure of risk aversion. A risk-neutral player would choose

T1 = 6 or T1 = 7, a risk lover takes T1 ≤ 6, and a risk-averse player takes T1 ≥ 7.

Similar to List 1, for Situation 12 to m in the setting of List 2 involving both risk and

ambiguity, a subject would opt for the sure payoff and for (m+ 1) to 22, he would choose the

uncertain gamble. We measure ambiguity by the number of B-decisions and call T2 = m− 11

the ambiguity-threshold of a subject.

It is possible to relate the thresholds of List 1 and List 2 to establish general relations for

extreme ambiguity aversion and neutrality towards ambiguity. If a subject is ambiguity-averse

according to MEU, we will observe T2 = T1. We assume that an ambiguity-neutral decision

maker has an unbiased second-order belief about the number of white balls in the ambiguous

urn. Thus, a subject that is ambiguity-neutral will choose the same decision in Situation

2i as in Situation i (i=6,7,...,11). For example, the decision in Situation 12 (the minimum

number of white balls is 0, i.e. every composition of the 100 balls is possible) corresponds to

the decision in Situation 6 where the composition is 50 white balls and 50 black balls. More

generally, an ambiguity-neutral decision maker will choose the same option in List 2 where

the minimum number of white balls is M ∈ {0, 20, 40, ...100} and in List 1 where the exact

number of white balls is N = (100 + M)/2. So we can relate the thresholds of an ambiguity-

neutral decision maker for List 1 and List 2: T̂2 = max[0, 2T1 − 10]. T̂2 is the threshold an

ambiguity-neutral subject would choose given a particular level of risk aversion as represented

by T1. The difference T2 − T̂2 of the observed threshold and the risk-adjusted benchmark is a

measure ambiguity aversion, after controlling for risk.

Eliciting risk aversion by an ordered binary choice list is a very robust method because

subjects only have to make binary choices. Using the same method for eliciting and measuring

ambiguity aversion will have the same advantage. So Part 1 gives a robust but rough estimation

of ambiguity aversion. The key advantage of the binary-choice setting is that it does not

explicitly rely on utility theory, and utility functions do not need to be specified since they

do not play any role. Instead, pure preferences can be measured in their basic form. In Part

2, we measure risk aversion and ambiguity aversion in a more sophisticated way, applying

ordered valuation lists. Subjects have to provide valuations for lotteries involving both risk

and ambiguity. In Part 2, there are 4 lists containing 45 situations in total. The configuration

of the urns for Situation 23 to 44 follows the same rule as for Part 1; the configuration of the

urns 45 to 67 is specified later. Table 1 contains the information about the urns given to the

subjects. In all situations involving ambiguity, i.e. List 4, 5, and 6, subjects also have to choose

the winning color.

We use the mechanism of Becker, DeGroot, and Marschak (1964) (BDM-mechanism) to

elicit the participating subjects’ valuations of the lotteries. In line with the BDM-mechanism,

the subjects are endowed with a lottery and they are given the opportunity to sell it to an

unbiased virtual buyer who randomly values the lottery at y ∈ [0, 10] according to a uniform

distribution. Before knowing y, the subjects have to set a sales price x for the lottery. If the
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sales price x is higher than the amount y the virtual buyer is willing to pay for the lottery,

then there is no transfer and the subject plays the lottery. In the other case, the lottery is sold

and the subject receives the buyer’s price y. In the instruction, we explain the mechanism in

detail and provide a simple graphical explanation clarifying that it is optimal for the subjects

to choose as sales price their personal reservation price for the lottery.

List 3 of Part 2 is very similar to List 1 of Part 1. There are 11 situations which differ with

respect to the number of white balls in the urns. The number of white balls is known exactly.

In situations i = 23 to i = 33, the number of white balls ranges from 0 to 100. A risk-neutral

subject would value (and ask in the BDM-mechanism) the urn of each situation in List 3 by

the expected value. A risk-averse subject would ask for a lower price and a risk lover would

demand a higher price.

In List 4 of Part 2, subjects have to provide valuations in a context involving ambiguity.

In particular, they have to value urns where only the minimum number of white balls in the

urn is known. Similar to List 2 in Part 1, the minimum number of white balls in situations

i = 34 to i = 44 ranges from 0 to 100. Besides stating a reservation price, the subjects also

have to choose the winning color for the lottery. This was done to minimize the subjects’ fears

that the urns have an adverse composition. In the case of an urn with a minimum number

of m white balls, a subject with a neutral attitude towards ambiguity will treat the urn as if

it contains Pm = m + 0.5(100 − m) white balls in expectation. And if he is risk-neutral, he

will ask for the price x̂m = Pm/10. The attitudes of a subject towards ambiguity are reflected

by the direction and the size of the valuation discount. The valuation discount is given by

x(white ≥ m) − x(white = 0.5(100 − m)). Thus, the responses in the risk-and-ambiguity

setting of List 4 can be controlled for the responses in the risk-only setting of List 3 to obtain

the valuation discount that is due to ambiguity only.

List 5 of Part 2 contains Situations 45 to 55. The minimum number of white and black balls

is known to the decision makers, ranging from 50 in Situation 45 to 0 in Situation 55. While

the degree of ambiguity increases with each situation, the unbiased expected number of white

and black balls is always 50. For this reason, the valuation difference of a particular situation

from List 5 and Situation 28 from List 3 measures ambiguity aversion.

In List 6, urns with balls of three different colors have to be priced. The exact number of

white balls in each urn is known, ranging from 0 to 55. The remaining balls of the 100 balls

in the urn are black or red. Again, the subjects have to choose a winning color for the lottery.

The decision maker wins 10 Euro if his color is drawn and 0 otherwise.

The Situations 34, 55, and 56 differ only in framing. In all three cases, the urns contain

balls of two colors and nothing is known about the composition. This allows us to control the

stability of the evaluation. Similarly, Situation 28 corresponds to Situation 45, since in both

cases the number of white and black balls is equal to 50.

Throughout the entire experiment, in addition to the participants’ own decisions regarding

the individual lotteries, the subjects have to provide an estimation on the decision/valuation

of the other participants in each situation. In Part 1, subjects have to provide an estimate on
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the decision of the majority of participants regarding playing the lottery or choosing the fixed

payment. The incentive for a correct response is a payoff of 3.00 Euros. For the situations

in Part 2, subjects have to estimate the median valuations provided by the participants. The

estimation is rewarded with 5 − |s −m|/2 Euros, where s is a particular subject’s estimation

and m is the median of all valuations.

The Experiment is set up with the software ztree (see Fischbacher, 2007) and is arranged

at the Frankfurt Laboratorium of Experimental Economics (FLEX). Participants are recruited

by email and by announcements in lectures at Goethe University Frankfurt. No subject has

earlier participated in similar decision experiments. In total, 10 sessions are conducted, with

138 subjects participating in the experiment in total. Given 67 different settings, this leads

to a total of 9246 own decisions and the same amount of observed estimations. The average

payout to the subjects amounts to 25.73 Euros, ranging from 5.30 Euros to 37.50 Euros.

Each session is organized in the same manner. After being assigned to computer places, the

subjects obtain written instructions. Part 1 is read loudly. Questions are answered privately.

Before taking decisions in Part 1, the subjects have to pass a test in which they have to prove

that they understand the instructions. After subjects have completed all 22 decisions of Part

1, one situation is chosen by chance to be played. All situations have the same probability to

be chosen. Practically, we draw one card out of a deck of 22 cards. The chosen card reports

the number of the situation to be played and, in the case of a situation involving ambiguity,

also the actual composition of the urn. Afterwards, we simulate the draw out of an urn by

drawing a card out of a deck containing cards for all numbers from 0 to 100. If the obtained

number is smaller or equal to the number of white balls in the urn as reported on the situation

card, we treat it as a draw of a white ball. Otherwise, it is assumed to be black. The result

of the draw is applied to the decisions of the subjects and money is credited to their account

accordingly. After completing Part 1, Part 2 is managed in the same manner: After all decisions

are made for Part 2, one situation is selected randomly, a ball is drawn in the same manner as

described above, and money is credited to each subject´s account according to his decision and

the outcome of the lottery. At the end, the subjects have to complete a questionnaire and are

privately payed in cash. The duration of a session is about two hours.

Throughout the entire experiment, big effort is put in creating an environment that rep-

resents real ambiguity and that gives the participants exactly the information as indicated.

Several measures are taken to accomplish this. The urns are assembled before the experiment

and all urns are documented in form of a deck of cards as mentioned above. Naturally, this

fact is communicated to the participants before they make their decisions. Moreover, in all

situations involving ambiguity, subjects are given the choice of the winning color in order to

minimize strategic considerations.
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4 Results

4.1 Measuring ambiguity aversion by simple binary choices

Table 2 presents summary statistics of the decisions taken in List 1, a setting only with risk and

without any ambiguity. The composition of the urn is known in each situation, as the exact

number of white balls is given. The numbers in the table show that the fraction of subjects

choosing the lottery instead of the fixed payment tends to increase with the number of white

balls in the urn. In most situations, the numbers for actual decision and estimation are similar,

indicating that the subjects’ own behavior does not differ substantially from the estimated

behavior for the other participants. However, in the range of 20 white balls to 50 white balls,

there is a substantial deviation, with a larger fraction of subjects actually choosing the lottery

than estimating the other participants to do so. This indicates that the individual subjects are

less risk-averse themselves than they think others to be.

The risk-only setting in List 1 serves as a benchmark case for the setting of List 2 which has

a similar setup, but includes ambiguity in addition to risk. In this case, the subjects only have

incomplete information on the composition of each urn. Instead of knowing the exact number

of white balls, they only have information on the minimum number of white balls in each urn.

Summary statistics for List 2 are given in Table 3. The numbers show that the fraction of

subjects choosing the lottery instead of the fixed payment tends to increase with the known

minimum number of white balls in the urn. This result holds for the actual decisions taken

and also for the estimation. However, for almost all urns, the fraction of subjects actually

choosing the lottery is larger than the fraction of subjects choosing the lottery as estimated

by themselves. This indicates that the individual subjects are less risk- and ambiguity-averse

than they think others to be. This effect is most pronounced in the range of minimum 10 to

minimum 40 white balls.

A typical strategy for the settings in List 1 and 2 is a threshold strategy. This implies that

with increasing (minimum) number of white balls in the urn, at a particular point, a participant

switches from choosing the fixed payment to choosing the lottery. For each participant, this

switching point is an individual threshold Ti for List i = 1 or i = 2. A subject who chooses

T1 = k in List 1 has decided for the sure alternative for all urns where the exact number of

white balls is K ≤ (k − 1)10. A subject who chooses T2 = k in List 2 has decided for the

sure alternative for all urns where the minimum number of white balls is K ≤ (k − 1)10. An

ambiguity-neutral subject will opt for the sure alternative in List 1 if the number of white

balls is K ′ ≤ K+100
2

, i.e. the subject will apply equal probabilities to the unknown balls. In

total, 123 out of the 138 participants followed threshold strategies and switched once from

fixed payment to lottery. Figure 1 shows the results of these participants. The left diagram

relates the threshold T1 of the risk-only setting in List 1 to the threshold T2 of the risk-and-

ambiguity setting in List 2 and counts the number of participants for all (T1,T2)-combinations.

Thus, naturally, each participant following a threshold strategy is represented once in this

diagram. The relation of the two thresholds applied by a particular participant allows to infer

13



Table 2: Summary Statistics, List 1

This table displays summary statistics for List 1, a setting only with risk, but no ambiguity. Panel A displays
the actual decisions taken by the subjects, aggregated over the subjects. Panel B displays the estimates of the
subjects concerning the median actual decision over all subjects. Panel C displays the difference between a
subject’s decision and his estimation. Panel D displays the quality of the estimation, represented as difference
between a subject’s estimation and the median decision. Each column represents a different situation with a
different composition of the urn, ranging from exactly 0 white balls to exactly 100 white balls. Lottery indicates
the fraction of subjects choosing to participate in the lottery, and Payment indicates the fraction of subjects
choosing the fixed payment instead of the lottery. Obs. shows the number of subjects. Pct > 0, Pct = 0, and
Pct < 0 show the share of subjects for which the corresponding value is larger than zero, equal to zero, and
smaller than zero, respectively.

Panel A: Decision
#white = 0 10 20 30 40 50 60 70 80 90 100

Lottery 0.0217 0.0290 0.0362 0.0217 0.0797 0.2246 0.5217 0.8478 0.9420 0.9710 0.9928
Fix payment 0.9783 0.9710 0.9638 0.9783 0.9203 0.7754 0.4783 0.1522 0.0580 0.0290 0.0072

Obs. 138 138 138 138 138 138 138 138 138 138 138

Panel B: Estimation
#white = 0 10 20 30 40 50 60 70 80 90 100

Lottery 0.0290 0.0290 0.0217 0.0145 0.0435 0.2101 0.5652 0.8551 0.9493 0.9710 0.9710
Fix payment 0.9710 0.9710 0.9783 0.9855 0.9565 0.7899 0.4348 0.1449 0.0507 0.0290 0.0290

Obs. 138 138 138 138 138 138 138 138 138 138 138

Panel C: Decision minus Estimation
#white = 0 10 20 30 40 50 60 70 80 90 100

Mean 0.0072 0.0000 -0.0145 -0.0072 -0.0362 -0.0145 0.0435 0.0072 0.0072 0.0000 -0.0217
Std 0.1478 0.1208 0.1199 0.0851 0.2537 0.4980 0.5108 0.2833 0.2562 0.2093 0.1464

Pct >0 0.0145 0.0072 0.0000 0.0000 0.0145 0.1159 0.1522 0.0435 0.0362 0.0217 0.0000
Pct =0 0.9783 0.9855 0.9855 0.9928 0.9348 0.7536 0.7391 0.9203 0.9348 0.9565 0.9783
Pct <0 0.0072 0.0072 0.0145 0.0072 0.0507 0.1304 0.1087 0.0362 0.0290 0.0217 0.0217

Obs. 138 138 138 138 138 138 138 138 138 138 138

Panel D: Quality of Estimation
#white = 0 10 20 30 40 50 60 70 80 90 100

Mean -0.0290 -0.0290 -0.0217 -0.0145 -0.0435 -0.2101 0.4348 0.1449 0.0507 0.0290 0.0290
Std 0.1684 0.1684 0.1464 0.1199 0.2047 0.4089 0.4975 0.3533 0.2202 0.1684 0.1684

Pct >0 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.4348 0.1449 0.0507 0.0290 0.0290
Pct =0 0.9710 0.9710 0.9783 0.9855 0.9565 0.7899 0.5652 0.8551 0.9493 0.9710 0.9710
Pct <0 0.0290 0.0290 0.0217 0.0145 0.0435 0.2101 0.0000 0.0000 0.0000 0.0000 0.0000

Obs. 138 138 138 138 138 138 138 138 138 138 138
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Table 3: Summary Statistics, List 2

This table displays summary statistics for List 2, a setting with risk and ambiguity. Panel A displays the actual
decisions taken by the subjects, aggregated over the subjects. Panel B displays the estimates of the subjects
concerning the median actual decision over all subjects. Panel C displays the difference between a subject’s
decision and his estimation. Panel D displays the quality of the estimation, represented as difference between
a subject’s estimation and the median decision. Each column represents a different situation with a different
composition of the urn, ranging from a minimum number of 0 white balls to a minimum number of 100 white
balls. Lottery indicates the fraction of subjects choosing to participate in the lottery, and Payment indicates
the fraction of subjects choosing the fixed payment instead of the lottery. Obs. shows the number of subjects.
Pct > 0, Pct = 0, and Pct < 0 show the share of subjects for which the corresponding value is larger than zero,
equal to zero, and smaller than zero, respectively.

Panel A: Decision
#white ≥ 0 10 20 30 40 50 60 70 80 90 100

Lottery 0.0290 0.0435 0.0870 0.1739 0.4130 0.6304 0.8261 0.9420 0.9710 0.9710 0.9855
Fix payment 0.9710 0.9565 0.9130 0.8261 0.5870 0.3696 0.1739 0.0580 0.0290 0.0290 0.0145

Obs. 138 138 138 138 138 138 138 138 138 138 138

Panel B: Estimation
#white ≥ 0 10 20 30 40 50 60 70 80 90 100

Lottery 0.0217 0.0362 0.0435 0.1232 0.2826 0.6232 0.8406 0.9203 0.9710 0.9638 0.9710
Fix payment 0.9783 0.9638 0.9565 0.8768 0.7174 0.3768 0.1594 0.0797 0.0290 0.0362 0.0290

Obs. 138 138 138 138 138 138 138 138 138 138 138

Panel C: Decision minus Estimation
#white ≥ 0 10 20 30 40 50 60 70 80 90 100

Mean -0.0072 -0.0072 -0.0435 -0.0507 -0.1304 -0.0072 0.0145 -0.0217 0.0000 -0.0072 -0.0145
Std 0.1478 0.1909 0.2377 0.3882 0.4956 0.4600 0.3193 0.1464 0.2093 0.1478 0.1199

Pct >0 0.0072 0.0145 0.0072 0.0507 0.0652 0.1014 0.0580 0.0000 0.0217 0.0072 0.0000
Pct =0 0.9783 0.9638 0.9420 0.8478 0.7391 0.7899 0.8986 0.9783 0.9565 0.9783 0.9855
Pct <0 0.0145 0.0217 0.0507 0.1014 0.1957 0.1087 0.0435 0.0217 0.0217 0.0145 0.0145

Obs. 138 138 138 138 138 138 138 138 138 138 138

Panel D: Quality of Estimation
#white ≥ 0 10 20 30 40 50 60 70 80 90 100

Mean -0.0217 -0.0362 -0.0435 -0.1232 -0.2826 0.3768 0.1594 0.0797 0.0290 0.0362 0.0290
Std 0.1464 0.1875 0.2047 0.3299 0.4519 0.4864 0.3674 0.2718 0.1684 0.1875 0.1684

Pct >0 0.0000 0.0000 0.0000 0.0000 0.0000 0.3768 0.1594 0.0797 0.0290 0.0362 0.0290
Pct =0 0.9783 0.9638 0.9565 0.8768 0.7174 0.6232 0.8406 0.9203 0.9710 0.9638 0.9710
Pct <0 0.0217 0.0362 0.0435 0.1232 0.2826 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Obs. 138 138 138 138 138 138 138 138 138 138 138

15



Figure 1: Personal attitudes towards ambiguity

These diagrams display personal attitudes towards ambiguity, controlling for attitudes towards risk. Only
individuals following threshold strategies are considered, i.e. individuals choosing the safe payoff for a low
number of white balls in the urn and switching once to the lottery at a particular point. The left diagram
displays the (T1, T2)-combinations of all subjects, i.e. the decisions of all subjects in List 1 (T1) and List 2
(T2). T1 and T2 indicate the number of decisions in List 1 and 2 where a subject chooses the sure payoff
instead of the lottery. Each threshold stands for the point where a particular subject switches from the risk-free
alternative to the lottery. Thus, the thresholds stand for the lottery-equivalent to the safe alternative. The
red cells stand for maximum ambiguity aversion, the blue cells stand for neutrality towards ambiguity. The
right diagram displays the relative ambiguity aversion RAA of all subjects in form of a histogram. RAA
serves as a measure for ambiguity aversion as it describes the horizontal position of a particular subject’s
(T1, T2)-combination in the left diagram. RAA = 0 stands for neutrality towards ambiguity, RAA = 1 stands
for maximum ambiguity aversion. One observation is excluded because RAA is not defined in this case.

Individual thresholds for risk (T1) and ambiguity (T2)

T1
T2 1 2 3 4 5 6 7 8 9 10 Sum

1 1 1
2 1 5 1 7
3 3 2 5 1 11
4 1 11 9 6 1 28
5 3 12 12 27
6 8 17 2 1 28
7 3 4 9 1 17
8 1 1
9 1 1 2

10 1 1

Sum 0 1 0 5 16 42 41 12 4 2 123

Relative Ambiguity Aversion
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her attitude towards ambiguity. In general, perfectly ambiguity-averse participants, as implied

by MEU, will treat urns with e.g. exactly 20 white balls the same as urns with a minimum

number of 20 white balls. As a consequence, for these participants, T1 will be equal to T2.

Thus, in the left diagram, the diagonal cells from top-left to bottom-right, highlighted with red

color, denote the extreme case of maximum ambiguity aversion. The other extreme, as implied

by Laplace-SEU, is neutrality towards ambiguity. In this case, participants treat urns with a

minimum number of 20 white balls the same as urns with exactly 60 white balls, since they

treat the probability of the unknown balls being white the same as them being black. The case

(T1, T2) = (6, 2) and other cases of neutrality towards ambiguity are given in the left diagram

by (T1,T2)-combinations highlighted blue. These combinations lie on a step function, ranging

from the points (T1, T2) = (6, 1) to (T1, T2) = (10, 10). Taken together, these two lines form a

corridor comprising cases ranging from ambiguity neutrality to complete ambiguity aversion.

Participants with (T1,T2)-combinations located to the right of the corridor exhibit friendliness

towards ambiguity. This means that these participants rely on a more favorable outcome than

implied by equal probabilities, i.e. that among the unknown balls, there are more white balls

than black balls. (T1,T2)-combinations located to the left of the corridor indicate inconsistent

behavior. In these cases, T1 is smaller than T2, i.e. for certain urns, these participants choose

the lottery when there are exactly x white balls in the urn, but they choose the fixed payment

when there are at least x white balls in the urn.

As can be seen in the left diagram of Figure 1, while 6 participants lie outside the corridor

and 36 are on the border, 81 participants lie within the corridor. It can be seen that of the

123 participants following threshold strategies, 3 can be classified as ambiguity friendly, 16 as

ambiguity neutral, 81 as to some extent but not completely ambiguity averse, 19 as completely

ambiguity averse, 3 as inconsistent behaviors (since the risk aversion alone is larger than the

combined risk-and-ambiguity aversion), and one as indeterminable (since he lies exactly on the

intersection of the two boundaries).

The relative position of a participant’s (T1,T2)-combination compared to the corridor shows

her attitudes towards ambiguity. To formally capture an individual’s attitude towards ambi-

guity, we introduce a relative measure of ambiguity aversion RAA which captures the decision

taken relative to that in case of ambiguity neutrality and that in case of maximum ambiguity

aversion:

RAA =
T̂1 − T1
T̂1 − T2

, with (10)

T̂1 =

{
T2+11

2
if T2 is odd

T2+10
2

if T2 is even
(11)

T1 is the threshold chosen by a particular individual in List 1, and T2 is the threshold

chosen in List 2. T̂1 is the threshold that would apply in List 1 if a particular individual

was neutral towards ambiguity for a given choice T2. The threshold of maximum ambiguity
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aversion corresponds to T1, i.e. an individual choosing T2 = T1 treats an urn with exactly x

white balls the same as an urn with a minimum number of x white balls. RAA = 0 stands

for ambiguity neutrality, RAA = 1 stands for maximum ambiguity aversion, and values of

0 < RAA < 1 indicate intermediate degrees of ambiguity aversion. Negative values for RAA

point at ambiguity-friendliness, and values of RAA larger than one indicate an inconsistent

behavior of participants.

The right diagram in Figure 1 shows a histogram with individual attitudes towards ambi-

guity as captured by the measure RAA for relative ambiguity aversion. From the results in the

diagram, it can be seen that almost all participants are ambiguity-averse. While the majority

of participants has intermediate degrees of ambiguity aversion, two large groups of participants

have extreme attitudes towards ambiguity, i.e. neutrality and maximum aversion. A Wilcoxon

test independently rejects the hypotheses RAA = 0 and RAA = 1 with very low p-values

(p ≤ 10−16) in both cases.

Overall, the results of List 1 and List 2 are quite stable and robust. The participants only to

a minor extent show inconsistent behavior. This is due to the fact that the experiment design

only required simple decisions between a lottery and a fixed payment, rather than more complex

decisions, such as e.g. valuations. Already in this simple setting, several properties concerning

ambiguity can be observed. The results show that most participants are ambiguity-averse, that

the extent of ambiguity aversion varies a lot across individuals, and that ambiguity aversion

only in some cases takes extreme values as implied by MEU and Laplace-SEU. On average

(and in many cases), ambiguity aversion takes an intermediate value, well between maximum

ambiguity (MEU) aversion and no aversion (Laplace-SEU).

4.2 Quantifying ambiguity aversion

In this section, ambiguity aversion is quantified. For this, the treatments in the Lists 3-6 are

applied, where the individual subjects were endowed with lotteries that they were allowed to

sell. Thus, by applying the BDM-mechanism, we obtain from each subject a reservation price

for each lottery. Besides the payoffs of the individual lotteries, this valuation depends on the

subjects’ attitudes towards risk and ambiguity. Since the experiment is designed to account for

both risk and ambiguity in similarly designed treatments, it is possible to extract the effect of

risk aversion on the valuations in the ambiguity treatment, thereby isolating the value discount

that is due to ambiguity only.

4.2.1 List 3: Risk-only setting

Table 4 and Figure 2 display the results of the risk-only setting where the composition of the

urns is known. The numbers in Table 4 show that in all settings, the valuations of the median

participant equal exactly the expected value of the urn. Thus, the median participant is risk-

neutral. In fact, a large fraction of participants are risk-neutral, as can be seen by the fact that

the same applies to the 75 percent quantile. The participants at the 25 percent quantile are
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Table 4: Summary Statistics, List 3

This table displays summary statistics for List 3, a setting with risk only. Panel A displays the actual decisions
taken by the subjects, aggregated over the subjects. Panel B displays the estimates of the subjects concerning
the median actual decision over all subjects. Panel C displays the difference between a subject’s decision and
his estimation. Panel D displays the quality of the estimation, represented as difference between a subject’s
estimation and the median decision. Panel E displays the relative risk discount RRD. Each column represents
a different situation with a different composition of the urn, ranging from exactly 0 white balls to exactly 100
white balls. Obs. shows the number of subjects. Pct > 0, Pct = 0, and Pct < 0 show the share of subjects for
which the corresponding value is larger than zero, equal to zero, and smaller than zero, respectively. Q-range
is the difference between the 25th percentile and the 75th percentile.

Panel A: Required Price
#white = 0 10 20 30 40 50 60 70 80 90 100

Mean 0.44 1.26 1.96 2.74 3.70 4.91 5.84 6.84 7.84 8.79 9.73
Std. 1.36 1.63 1.43 1.42 1.47 1.54 1.49 1.47 1.37 1.31 1.30
Min 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.70 0.80 0.90 0.00
25% 0.00 0.50 1.41 2.00 3.00 4.50 5.49 6.50 7.65 8.99 10.00

Median 0.00 1.00 2.00 3.00 4.00 5.00 6.00 7.00 8.00 9.00 10.00
75% 0.01 1.00 2.00 3.00 4.00 5.00 6.00 7.01 8.20 9.50 10.00
Max 9.00 10.00 9.00 9.00 9.01 10.00 10.00 10.00 10.00 10.00 10.00
Obs. 138 138 138 138 138 138 138 138 138 138 138

Panel B: Estimation of Median Required Price
#white = 0 10 20 30 40 50 60 70 80 90 100

Mean 0.63 1.40 2.18 2.98 3.99 4.98 5.86 6.79 7.67 8.70 9.76
Std. 1.79 1.74 1.65 1.48 1.46 1.23 1.22 1.18 1.32 1.23 1.12
Min 0.00 0.00 0.00 0.00 0.00 0.45 0.55 0.65 0.75 0.85 0.00
25% 0.00 0.90 1.50 2.18 3.50 4.79 5.50 6.50 7.50 8.50 10.00

Median 0.00 1.00 2.00 3.00 4.00 5.00 6.00 7.00 8.00 9.00 10.00
75% 0.18 1.00 2.00 3.00 4.00 5.00 6.00 7.00 8.00 9.00 10.00
Max 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00
Obs. 138 138 138 138 138 138 138 138 138 138 138

Panel C: Decision minus Estimation
#white = 0 10 20 30 40 50 60 70 80 90 100

Mean -0.18 -0.14 -0.22 -0.23 -0.29 -0.08 -0.02 0.05 0.17 0.09 -0.03
Std 1.28 1.01 1.14 1.16 1.36 1.37 1.30 1.37 1.35 1.22 0.79

Pct > 0 0.07 0.17 0.20 0.20 0.20 0.22 0.26 0.30 0.30 0.30 0.07
Pct = 0 0.80 0.53 0.49 0.46 0.46 0.54 0.49 0.46 0.51 0.55 0.90
Pct < 0 0.13 0.30 0.31 0.34 0.33 0.23 0.25 0.25 0.18 0.15 0.04

Obs. 138 138 138 138 138 138 138 138 138 138 138

Panel D: Quality of Estimation
#white = 0 10 20 30 40 50 60 70 80 90 100

Mean 0.63 0.40 0.18 -0.02 -0.01 -0.02 -0.14 -0.21 -0.33 -0.30 -0.24
Std 1.79 1.74 1.65 1.48 1.46 1.23 1.22 1.18 1.32 1.23 1.12

Pct > 0 0.36 0.23 0.22 0.20 0.22 0.17 0.17 0.20 0.20 0.19 0.00
Pct = 0 0.64 0.49 0.46 0.45 0.45 0.54 0.48 0.44 0.47 0.50 0.87
Pct < 0 0.00 0.28 0.32 0.36 0.33 0.29 0.35 0.36 0.33 0.31 0.13

Obs. 138 138 138 138 138 138 138 138 138 138 138

Panel E: Relative Risk Discount
#white = 0 10 20 30 40 50 60 70 80 90 100

Median 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Q-range 0.50 0.29 0.33 0.25 0.10 0.09 0.07 0.07 0.06
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Figure 2: Summary Statistics, List 3

This figure displays summary statistics for List 3 (risk only, no ambiguity). The graphic contains boxplots
showing the distribution of individual valuations (blue color) and estimations about others’ valuations (red
color) for each setting. Each setting is characterized by p, i.e. the exactly known probability that a white ball
is drawn. The results are based on observations from 138 participants.
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Figure 3: Summary Statistics, List 4

This figure displays summary statistics for List 4 (risk and ambiguity). The left graphic contains boxplots
showing the distribution of individual valuations (blue color) and estimations about others’ valuations (red
color) for each setting. The red line represents the valuation boundary at maximum ambiguity aversion for a
participant with median risk attitudes according to List 3. The blue line represents the valuation boundary at
neutral attitudes towards ambiguity for a participant with median risk attitudes according to List 3. The right
graphic shows the distributions of the relative ambiguity discount RAD of individual participants in different
settings. Each setting is characterized by min p, i.e. the minimum probability that a white ball is drawn. The
results are based on observations from 138 participants.
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slightly risk-averse, with valuations only slightly below the expected values of the urns. The

minimum and maximum numbers show that the entire range of possible valuations is covered,

some of them clearly non-realistic outliers. A comparison of Panel A and Panel B shows that

actual prices and estimated prices do not differ substantially in most settings. Panel D shows

the quality of the estimation. It can be seen that for settings with low probability of success,

participants tend to overestimate the amount of money others are willing to pay, while for

settings with high probability of success, participants tend to underestimate it. The highest

accuracy is given for urns with 30-50 winning balls. In Figure 2, the blue-colored boxplots stand

for valuations, and the red-colored boxplots stand for estimations. The diagram provides several

insights: First, the results indicate that a large fraction of participants is risk neutral or slightly

risk-averse. The boxes, standing for 75 percent of the observations, are in almost all situations

located at and below the expected payoff of that situation. In many cases, median and 75

percent quantile coincide exactly with the expected payoff. Second, the results indicate that

own valuations do not differ substantially from estimates about other participants’ valuations.

Thus, own attitudes towards risk are generally also attributed to the other participants.
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Table 5: Summary Statistics, List 4

This table displays summary statistics for List 4, a setting with both risk and ambiguity. Panel A displays
the actual decisions taken by the subjects, aggregated over the subjects. Panel B displays the estimates of the
subjects concerning the median actual decision over all subjects. Panel C displays the difference between a
subject’s decision and his estimation. Panel D displays the quality of the estimation, represented as difference
between a subject’s estimation and the median decision. Panel E displays the relative ambiguity discount RAD.
Panel F displays the percentage number of subjects choosing white or black as winning color. Each column
represents a different situation with a different composition of the urn, ranging from a minimum number of 0
white balls to a minimum number of 100 white balls. The other balls in the urn may either be of white or black
color. Obs. shows the number of subjects. Pct > 0, Pct = 0, and Pct < 0 show the share of subjects for which
the corresponding value is larger than zero, equal to zero, and smaller than zero, respectively. Q-range is the
difference between the 25th percentile and the 75th percentile.

Panel A: Required Price
#white ≥ 0 10 20 30 40 50 60 70 80 90 100

Mean 4.12 3.85 3.97 4.46 4.92 5.78 6.65 7.54 8.28 9.07 9.81
Std. 3.21 2.59 2.22 2.04 1.91 1.79 1.69 1.57 1.51 1.25 1.17
Min 0.00 0.00 0.00 0.00 0.00 0.00 0.60 0.70 0.80 0.90 0.00
25% 1.00 1.58 2.00 3.00 4.00 5.00 6.00 7.00 8.00 9.00 10.00

Median 4.26 3.50 4.00 4.50 5.00 6.00 7.00 8.00 8.50 9.50 10.00
75% 5.00 5.50 6.00 6.00 6.24 7.00 8.00 8.50 9.00 9.70 10.00
Max 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00
Obs. 138 138 138 138 138 138 138 138 138 138 138

Panel B: Estimation of Median Required Price
#white ≥ 0 10 20 30 40 50 60 70 80 90 100

Mean 4.32 4.06 4.24 4.62 5.17 5.74 6.56 7.38 8.16 8.96 9.65
Std. 3.19 2.55 2.15 1.82 1.62 1.51 1.44 1.38 1.36 1.18 1.52
Min 0.00 0.00 0.00 1.00 1.50 0.00 0.00 0.00 0.00 0.00 0.00
25% 2.00 2.00 2.50 3.00 4.00 5.00 6.00 7.00 8.00 9.00 10.00

Median 4.00 3.55 4.00 4.50 5.00 5.50 6.95 7.50 8.22 9.00 10.00
75% 5.89 5.50 6.00 6.00 6.00 6.95 7.50 8.20 9.00 9.50 10.00
Max 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00
Obs. 138 138 138 138 138 138 138 138 138 138 138

Panel C: Decision minus Estimation
#white ≥ 0 10 20 30 40 50 60 70 80 90 100

Mean -0.19 -0.21 -0.27 -0.16 -0.25 0.04 0.09 0.15 0.13 0.11 0.16
Std 2.16 1.65 1.73 1.70 1.57 1.49 1.41 1.39 1.33 1.29 1.49

Pct > 0 0.22 0.31 0.28 0.31 0.26 0.35 0.36 0.41 0.33 0.36 0.08
Pct = 0 0.52 0.38 0.41 0.36 0.43 0.41 0.40 0.40 0.50 0.46 0.89
Pct < 0 0.25 0.30 0.32 0.33 0.30 0.25 0.24 0.20 0.17 0.17 0.03

Obs. 138 138 138 138 138 138 138 138 138 138 138

Panel D: Quality of Estimation
#white ≥ 0 10 20 30 40 50 60 70 80 90 100

Mean 0.06 0.56 0.24 0.12 0.17 -0.26 -0.44 -0.62 -0.34 -0.54 -0.36
Std 3.19 2.55 2.15 1.82 1.62 1.51 1.44 1.38 1.36 1.18 1.52

Pct > 0 0.49 0.50 0.46 0.46 0.42 0.34 0.30 0.27 0.38 0.20 0.00
Pct = 0 0.00 0.01 0.05 0.04 0.17 0.14 0.20 0.17 0.09 0.20 0.86
Pct < 0 0.51 0.49 0.49 0.49 0.41 0.51 0.50 0.57 0.53 0.61 0.14

Obs. 138 138 138 138 138 138 138 138 138 138 138

Panel E: Relative Ambiguity Discount
#white ≥ 0 10 20 30 40 50 60 70 80 90 100

Median 0.06 0.47 0.67 0.60 0.50
Q-range 0.86 0.94 0.77 0.84 1.00

Panel F: Chosen Color
#white ≥ 0 10 20 30 40 50 60 70 80 90 100

White 0.514 0.630 0.681 0.703 0.848 0.957 0.986 0.993 1.000 1.000 0.986
Black 0.486 0.370 0.319 0.297 0.152 0.043 0.014 0.007 0.000 0.000 0.014
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4.2.2 List 4: Risk and Ambiguity - asymmetrical case

List 4 is a setting with both risk and ambiguity. It is an asymmetrical setting since the

minimum number of balls of one color only (white) is given. The number of black balls in the

urn is unknown.

Table 5 and Figure 3 display the results of the setting involving risk and ambiguity. The

composition of the urns is only known to some extent, as the participants obtain information

on the minimum number of white balls in the urn. The participants of the experiment could

select the winning color. The numbers in Table 5 are larger than those of the risk-only setting

in Table 4, which is not surprising since these situations clearly dominate. Moreover, there is

an almost monotonic increase in mean and median valuations of the urns with rising minimum

number of white balls in the urn. This is consistent with SEU theory since a larger number of

white balls guaranteed in the urn increases the probability of a good outcome. However, the

first urn with a minimum number of 0 white balls is an exception, with valuations larger than

that of the next urn with a minimum number of 10 white balls. Panel B shows the estimations

of median required prices for each urn. The numbers are similar to the ones in Panel A, showing

that the belief about others’ valuations does not differ dramatically from own valuations. Panel

E shows for each urn the winning color chosen by the participants. For the first urn with a

minimum number of 0 white balls in the urn, a similar number of participants chose black and

white as winning color. This is a very plausible result, since no information is given about the

urn and there is no reason to prefer one color to the other. For the next urns with increasing

number of white balls guaranteed, the fraction of participants choosing white as winning color

increases monotonically. In the urn with at least 50 white balls, 95.7 percent of the participants

chose white as winning color. This is plausible, since white clearly dominates black. In the

cases of the urns with a minimum of 10 to 40 white balls, a rather large fraction of participants

chose black as winning color (between 15.2 percent and 37.0 percent), given the fact that the

information given speaks in favor of white, since a certain number of white balls is guaranteed

while the number of black balls is unknown.

Figure 3 displays the participants’ valuations in two diagrams. The left diagram shows

for each urn the distribution of the observations in the form of boxplots. The left, blue-

colored boxplots stand for valuations, and the right, red-colored boxplots stand for estimations.

In addition, the diagram includes in blue- and red-colored diamonds, representing valuations

according to MEU theory (red diamonds) and Laplace-SEU theory (blue diamonds). In both

cases, risk attitudes as obtained from List 3 are accounted for. MEU theory implies maximum

ambiguity aversion. Thus, experiment participants with maximum ambiguity aversion will

treat urns with a certain guaranteed minimum number of white balls as if they contain exactly

this number of white balls. In addition, they will not consider black as winning color because

there is no guarantee at all on the number of black balls. Thus, for completely ambiguity-

averse participants, the setting of List 4 is exactly the same as the setting of List 3. As a

consequence, the valuations of List 3 can be taken as a reference for List 4. In the diagram,

median valuations of List 3 are included as red diamonds to graphically show the extreme case
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of maximum ambiguity aversion (and still accounting for actual risk attitudes as gathered with

the responses in List 3). The second extreme is the case of neutrality towards ambiguity. This

case corresponds to SEU theory with Laplace (1820) attitudes. In the case of neutrality towards

ambiguity, the balls with unknown color will symmetrically be assumed to be of white or black

color. An urn with a guaranteed minimum number of e.g. 20 white balls will correspondingly

be assumed to consist of 60 white balls by ambiguity-neutral participants. Again, the risk-only

valuation of this urn can be found in List 3. The corresponding median numbers from the

risk-only setting of List 3 are included as blue diamonds in the diagram. Taken together, the

red and blue diamonds in the left diagram of Figure 3 serve as boundaries, indicating two

extreme cases concerning the attitudes towards ambiguity, i.e. maximum ambiguity aversion

and ambiguity neutrality. Note that these boundaries account for risk aversion as we employ

the valuations of the risk-only setting of List 3.

The left diagram provides several insights: First, the results indicate that a large fraction of

participants is ambiguity-averse. The boxes, standing for 50 percent of the observations, are in

almost all situations located well between the two boundaries representing ambiguity-neutrality

and maximum ambiguity-aversion. Second, the boxes are wide-spread between the boundaries,

indicating that all levels of ambiguity aversion between the two extremes are present among

the participants of the experiment. Third, some observations lie above the upper boundary,

indicating that there are some individual cases of friendliness towards ambiguity. Fourth, only

a few observations lie below the lower boundary. Fifth, the median ambiguity aversion given by

the small horizontal line in the individual boxes is well between the two boundaries. However,

its relative location between the boundaries varies and depends on the situation. Sixth, the

boxplots for own valuations and estimations have a similar shape and location, indicating that

own valuations do not differ substantially from estimates about other participants’ valuations.

Thus, own attitudes towards ambiguity are generally also attributed to the other participants.

To track the attitude towards ambiguity for each participant more in detail, we introduce

a measure RAD representing the relative ambiguity discount. The relative ambiguity discount

RAD is determined by the location of a particular valuation Vactual in relation to the boundaries

given by valuations in the case of maximum ambiguity aversion Vmaximumaversion and valuations

in the case of ambiguity neutrality Vneutrality, i.e.

RAD =
Vneutrality − Vactual

Vneutrality − Vmaximumaversion
=
V List3
0.5(1+p) − V List4

p

V List3
0.5(1+p) − V List3

p

. (12)

A relative ambiguity discount of RAD = 0 indicates ambiguity neutrality, and RAD = 1

stands for maximum ambiguity aversion. The right diagram of Figure 3 shows the number

of participants with a particular relative ambiguity discount for each situation. A situation is

represented by an urn with a certain minimum probability of a good outcome, e.g. a guaranteed

minimum number of 20 white balls. It can be seen that the participants can be classified into

three groups of roughly equal size. The black vertical lines in the diagram stand for participants

with extreme types of ambiguity aversion, i.e. maximum ambiguity aversion and ambiguity
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Figure 4: Summary Statistics, List 5

This figure displays summary statistics for List 5 (symmetrical ambiguity). The left graphic contains boxplots
showing the distribution of individual valuations (blue color) and estimations about others’ valuations (red
color) for each setting. The red line represents the valuation boundary at maximum ambiguity aversion for a
participant with median risk attitudes according to List 3. The blue line represents the valuation boundary at
neutral attitudes towards ambiguity for a participant with median risk attitudes according to List 3. The right
graphic shows the distributions of the relative ambiguity discount RAD of individual participants in different
settings. Each setting is characterized by min p, i.e. the minimum probability that a white ball is drawn. The
results are based on observations from 138 participants.
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neutrality. It can be seen that in fact, many participants chose one of the two extremes (around

one third of the participants for each extreme). Most remaining participants impose a relative

ambiguity discount of 0 < RAD < 1. They form a third group with intermediate values of

ambiguity aversion. To a certain extent, these results can be interpreted in correspondence to

Einhorn and Hogarth (1985) in the sense that subjects anchor on focal points. However, we

find that correlation of risk and ambiguity aversion depends on the decision situation.

Note that the RAD measure differs from the α-MEU of Ahn et al. (2009) in the sense that

it relates the ambiguity discount to the difference of the neutral and the worst case instead of

the difference of the best and worst case.

These results indicate that neither SEU with Laplace (1820) attitudes nor MEU or α-MEU

are appropriate characterizations of ambiguity aversion that apply in general. Instead, the

extent of ambiguity aversion depends on the type of each individual, and each type seems to

exist.

4.2.3 List 5: Risk and Ambiguity - symmetrical case

The setting in List 5 also involves both risk and ambiguity. However, in contrast to List

4, a symmetrical case of ambiguity is investigated. In particular, the same information is

available concerning the guaranteed minimum number of both white and black balls in the urn.
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Table 6: Summary Statistics, List 5

This table displays summary statistics for List 5, a setting with both risk and ambiguity. Panel A displays
the actual decisions taken by the subjects, aggregated over the subjects. Panel B displays the estimates of the
subjects concerning the median actual decision over all subjects. Panel C displays the difference between a
subject’s decision and his estimation. Panel D displays the quality of the estimation, represented as difference
between a subject’s estimation and the median decision. Panel E displays the relative ambiguity discount RAD.
Panel F displays the percentage number of subjects choosing white or black as winning color. Each column
represents a different situation with a different composition of the urn, ranging from minimum numbers of 50
white balls and 50 black balls to minimum numbers of 0 white balls and 0 black balls. The other balls in the
urn may either be of white or black color. Obs. shows the number of subjects. Pct > 0, Pct = 0, and Pct < 0
show the share of subjects for which the corresponding value is larger than zero, equal to zero, and smaller than
zero, respectively. Q-range is the difference between the 25th percentile and the 75th percentile.

Panel A: Required Price
#white,#black ≥ 50 45 40 35 30 25 20 15 10 5 0

Mean 4.92 4.60 4.35 4.11 3.92 3.81 3.75 3.56 3.48 3.27 3.35
Std. 1.72 1.65 1.63 1.64 1.71 1.82 1.97 2.05 2.15 2.30 2.60
Min 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
25% 4.50 4.00 3.93 3.50 3.00 2.50 2.03 2.00 2.00 1.03 1.00

Median 5.00 4.80 4.43 4.00 4.00 4.00 3.80 3.60 3.50 3.50 3.65
75% 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00
Max 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00
Obs. 138 138 138 138 138 138 138 138 138 138 138

Panel B: Estimation of Median Required Price
#white,#black ≥ 50 45 40 35 30 25 20 15 10 5 0

Mean 4.97 4.70 4.48 4.24 4.08 3.86 3.83 3.66 3.56 3.31 3.45
Std. 1.57 1.50 1.55 1.53 1.57 1.65 1.84 2.01 2.15 2.37 2.59
Min 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
25% 4.73 4.25 4.00 3.50 3.00 2.50 2.29 2.00 2.00 1.00 1.00

Median 5.00 4.60 4.50 4.00 4.00 4.00 4.00 3.80 3.75 3.55 4.00
75% 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00
Max 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00
Obs. 138 138 138 138 138 138 138 138 138 138 138

Panel C: Decision minus Estimation
#white,#black ≥ 50 45 40 35 30 25 20 15 10 5 0

Mean -0.05 -0.11 -0.13 -0.14 -0.16 -0.06 -0.08 -0.10 -0.07 -0.04 -0.10
Std 1.63 1.51 1.68 1.46 1.61 1.47 1.66 1.78 1.80 1.58 1.73

Pct > 0 0.23 0.30 0.30 0.24 0.25 0.29 0.27 0.27 0.26 0.27 0.17
Pct = 0 0.57 0.44 0.46 0.48 0.50 0.48 0.49 0.49 0.49 0.47 0.59
Pct < 0 0.20 0.25 0.25 0.28 0.25 0.23 0.24 0.24 0.25 0.26 0.24

Obs. 138 138 138 138 138 138 138 138 138 138 138

Panel D: Quality of Estimation
#white,#black ≥ 50 45 40 35 30 25 20 15 10 5 0

Mean -0.03 -0.10 0.05 0.24 0.08 -0.14 0.03 0.06 0.06 -0.19 -0.20
Std 1.57 1.50 1.55 1.53 1.57 1.65 1.84 2.01 2.15 2.37 2.59

Pct > 0 0.14 0.44 0.51 0.49 0.46 0.41 0.54 0.52 0.51 0.50 0.55
Pct = 0 0.59 0.02 0.00 0.12 0.12 0.11 0.00 0.00 0.02 0.01 0.00
Pct < 0 0.27 0.54 0.49 0.40 0.42 0.48 0.46 0.48 0.46 0.49 0.45

Obs. 138 138 138 138 138 138 138 138 138 138 138

Panel E: Relative Ambiguity Discount
#white,#black ≥ 50 45 40 35 30 25 20 15 10 5 0

Median 0.40 0.50 0.39 0.34 0.22
Q-range 1.00 0.83 0.83 0.80 0.89

Panel F: Chosen Color
#white,#black ≥ 50 45 40 35 30 25 20 15 10 5 0

White 0.826 0.819 0.833 0.819 0.833 0.812 0.833 0.783 0.812 0.812 0.833
Black 0.174 0.181 0.167 0.181 0.167 0.188 0.167 0.217 0.188 0.188 0.167
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Across the individual urn, the guaranteed minimum number of white and black balls is reduced

stepwise from 50 to 0. Thus, while the extent of ambiguity in the different situations increases,

the relative attractiveness of choosing white or black as winning color remains the same. Thus,

any obtained valuation difference across the situations is only attributable to attitudes towards

risk and ambiguity, and not to a changing expected value due to more white balls in the urn.

After extracting the effect of risk, the pure effect of ambiguity can be observed.

Table 6 and Figure 4 display the results of the setting involving risk and ambiguity in the

symmetrical case. The first case with minimum numbers of 50 white and 50 black balls is a case

with risk only, involving no ambiguity, since the composition of the urn is known completely.

The setting of this case corresponds exactly to the urn in List 3 with 50 white and 50 black

balls. A comparison of these two cases with respect to mean and median valuations (but also

the quantiles) shows that these numbers are essentially the same. This demonstrates that there

is some stability of the behavior of experiment participants during the course of the experiment.

As mentioned before, the median participant is risk-neutral.

The results in Table 6 demonstrate that both mean and median valuations in almost all

settings decrease monotonically as the degree of ambiguity increases and the fraction of balls

in the urn with unknown color becomes larger. Only in the last setting, the special case of

complete ambiguity, i.e. nothing is known about the number of white or black balls in the urn,

there is a slight but remarkable increase in valuations again. But overall, median valuations

drop from 5 in the first setting to a low of 3.5 in the next-to-last setting. Since risk and expected

return are the same across the settings, this effect is due to ambiguity only. This ambiguity

discount is very substantial and it exists although the participants were allowed to choose the

winning color, demonstrating the strong valuation impact of ambiguity.

Figure 4 presents boxplots for all the settings of List 5. The results are essentially the

same as in List 4: there is wide-spread ambiguity-aversion among participants, all degrees of

ambiguity aversion are present, and the median relative ambiguity discount takes values ranging

from 22 percent to 50 percent.

4.2.4 List 6: Risk and Ambiguity - multiple states

List 6 presents a final variation of the ambiguity setting. It includes risk and ambiguity in

multiple states. There are two changes made to the previous settings. First, the balls in the

urns may be of a third color, red, in addition to white and black. Second, the exact number

of white balls in the urns is known to the participants, instead of the minimum number, as

in the other ambiguity settings. In this setting, ambiguity stems from the fact that the balls

with unknown color may be of two specific colors (black and red), for which no information is

available.

Table 7 and Figure 5 display the results of the setting involving risk and ambiguity in the

case of multiple states. In List 6, participants in general rarely show high degrees of ambiguity

aversion. The median ambiguity discounts are 1 percent and 12 percent, reflecting a slight

aversion of experiment participants against ambiguity. These discounts are substantially lower
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Table 7: Summary Statistics, List 6

This table displays summary statistics for List 6, a setting with both risk and ambiguity. Panel A displays
the actual decisions taken by the subjects, aggregated over the subjects. Panel B displays the estimates of the
subjects concerning the median actual decision over all subjects. Panel C displays the difference between a
subject’s decision and his estimation. Panel D displays the quality of the estimation, represented as difference
between a subject’s estimation and the median decision. Panel E displays the relative ambiguity discount RAD.
Panel F displays the percentage number of subjects choosing white, black, or red as winning color. Each column
represents a different situation with a different composition of the urn, ranging from exactly 0 white balls to
exactly 100 white balls. While the number of white balls in the urn is known, the number of black and red balls
is unknown. Obs. shows the number of subjects. Pct > 0, Pct = 0, and Pct < 0 show the share of subjects for
which the corresponding value is larger than zero, equal to zero, and smaller than zero, respectively. Q-range
is the difference between the 25th percentile and the 75th percentile.

Panel A: Required Price
#white = 0 5 10 15 20 25 30 35 40 45 50 55

Mean 4.01 3.85 3.66 3.44 3.30 3.22 3.16 3.45 3.98 4.45 4.96 5.59
Std. 2.56 2.20 1.94 1.85 1.62 1.55 1.47 1.52 1.58 1.67 1.76 1.84
Min 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
25% 2.00 2.09 2.00 1.85 2.00 2.50 2.50 3.00 3.50 4.00 4.50 5.00

Median 4.90 4.45 4.10 4.00 3.50 3.23 3.18 3.50 4.00 4.50 5.00 5.50
75% 5.00 4.80 4.50 4.25 4.00 3.75 3.58 3.70 4.00 4.88 5.21 6.00
Max 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00
Obs. 138 138 138 138 138 138 138 138 138 138 138 138

Panel B: Estimation of Median Required Price
#white = 0 5 10 15 20 25 30 35 40 45 50 55

Mean 4.01 3.88 3.73 3.50 3.39 3.32 3.48 3.72 4.20 4.67 5.21 5.63
Std. 2.29 2.09 1.84 1.61 1.42 1.30 1.51 1.38 1.50 1.59 1.57 1.53
Min 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.50 0.00
25% 2.63 2.24 2.33 2.00 2.21 2.50 3.00 3.00 3.63 4.00 4.83 5.00

Median 4.96 4.30 4.00 3.95 3.64 3.26 3.50 3.50 4.00 4.50 5.00 5.50
75% 5.00 4.75 4.50 4.25 4.00 3.79 3.80 4.00 4.24 5.00 5.08 5.85
Max 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00
Obs. 138 138 138 138 138 138 138 138 138 138 138 138

Panel C: Decision minus Estimation
#white = 0 5 10 15 20 25 30 35 40 45 50 55

Mean -0.01 -0.03 -0.07 -0.06 -0.09 -0.10 -0.31 -0.27 -0.22 -0.22 -0.25 -0.04
Std 1.65 1.66 1.63 1.63 1.62 1.62 1.72 1.66 1.66 1.71 1.68 1.78

Pct > 0 0.22 0.24 0.20 0.23 0.21 0.20 0.20 0.20 0.21 0.22 0.23 0.33
Pct = 0 0.51 0.44 0.46 0.46 0.50 0.49 0.46 0.50 0.48 0.48 0.51 0.44
Pct < 0 0.26 0.32 0.33 0.31 0.29 0.31 0.33 0.30 0.31 0.30 0.25 0.23

Obs. 138 138 138 138 138 138 138 138 138 138 138 138

Panel D: Quality of Estimation
#white = 0 5 10 15 20 25 30 35 40 45 50 55

Mean -0.89 -0.57 -0.37 -0.50 -0.11 0.10 0.30 0.22 0.20 0.17 0.21 0.13
Std 2.29 2.09 1.84 1.61 1.42 1.30 1.51 1.38 1.50 1.59 1.57 1.53

Pct > 0 0.51 0.49 0.48 0.41 0.51 0.52 0.57 0.33 0.29 0.33 0.25 0.28
Pct = 0 0.00 0.00 0.01 0.09 0.04 0.00 0.00 0.33 0.41 0.35 0.48 0.35
Pct < 0 0.49 0.51 0.51 0.50 0.45 0.48 0.43 0.34 0.30 0.32 0.27 0.38

Obs. 138 138 138 138 138 138 138 138 138 138 138 138

Panel E: Relative Ambiguity Discount
#white = 0 5 10 15 20 25 30 35 40 45 50 55

Median 0.01 0.12
Q-range 0.50 0.50

Panel F: Chosen Color
#white = 0 5 10 15 20 25 30 35 40 45 50 55

White 0.138 0.123 0.152 0.188 0.196 0.196 0.333 0.783 0.891 0.935 0.957 0.971
Black 0.551 0.609 0.522 0.536 0.551 0.529 0.428 0.145 0.080 0.051 0.036 0.022
Red 0.312 0.268 0.326 0.275 0.254 0.275 0.239 0.072 0.029 0.014 0.007 0.007
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Figure 5: Summary Statistics, List 6

This figure displays summary statistics for List 6 (balls with three colors). The left graphic contains boxplots
showing the distribution of individual valuations (blue color) and estimations about others’ valuations (red
color) for each setting. The red line represents the valuation boundary at maximum ambiguity aversion for a
participant with median risk attitudes according to List 3. The blue line represents the valuation boundary at
neutral attitudes towards ambiguity for a participant with median risk attitudes according to List 3. The right
graphic shows the distributions of the relative ambiguity discount RAD of individual participants in different
settings. Each setting is characterized by p, i.e. the exactly known probability that a white ball is drawn. The
results are based on observations from 138 participants.
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than the discounts observed in the other treatments. This suggests that the degree of ambiguity

aversion to some extent seems to depend on framing.

The results obtained from the experiments suggest that: 1) ambiguity aversion exists, 2)

ambiguity aversion is different from that assumed in several theories, 3) ambiguity aversion is

very different across individuals, 4) the attitudes of individual subjects concerning ambiguity

correspond to their expectations about others’ attitudes, and 5) ambiguity aversion differs

substantially from risk aversion. Overall, the obtained results suggest that human aversion

against ambiguity exists and that it is much more pronounced than human aversion against

risk. This suggests that for model applications, it is important to capture both, attitudes

towards risk and attitudes towards ambiguity, having important implications for asset pricing.

Finally, while most theoretical work on ambiguity builds on MEU, our results provide evidence

that MEU does not adequately capture individual attitudes towards ambiguity.

4.3 Estimating Parameters for Risk Aversion and Ambiguity Aver-

sion

The results as evaluated in the previous sections indicate that there is a widespread aversion

against ambiguity and that subjects are imposing a value discount on lotteries involving ambi-

guity. The value discount due to ambiguity is an additional value discount which is not related

to the risks involved, since risk is controlled for. However, the valuation discounts for risk and

ambiguity, as investigated in the previous sections, cannot be compared directly, because the

discount not only depends on personal attitudes, but also on the amount of risk and ambiguity

inherent in a particular situation. This is a problem, since a measure for comparing specific

amounts of risk and ambiguity first has to be developed.

This problem can be resolved by estimating the parameters of risk aversion and ambiguity

aversion, instead of focussing on valuation discounts. In classical utility theory, the aversion of

subjects against risk is typically captured by a specific risk aversion parameter. In a similar

manner, this section aims at identifying and estimating a parameter that captures the am-

biguity aversion of individual subjects and relating it to the corresponding parameter of risk

aversion. Once the parameters for risk aversion and ambiguity aversion are estimated, they can

be compared directly with respect to their impact and direction.

Izhakian and Benninga (2008) derive a formal expression relating the uncertainty premium

to both risk aversion and ambiguity aversion, assuming a SP-utility function as introduced by

Klibanoff, Marinacci, and Mukerji (2005). This allows to jointly estimate the parameters for risk

aversion and ambiguity aversion. However, this expression relies on a Taylor-approximation and

is found to be too inaccurate for our purpose, since it cannot deal with a variation of ambiguity

as large as in the settings of our experiment.

Thus, we refer directly to Klibanoff, Marinacci, and Mukerji (2005). Since a joint estimation

of the two parameters is not feasible, we apply a two-stage procedure to estimate the two

parameters separately. In the first stage, the parameter of risk aversion γ is estimated in the
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risk-only setting of List 3. In the second stage, the obtained parameter of risk aversion is used

to estimate the parameter of ambiguity aversion η in the risk-and-ambiguity settings of Lists

4-6.

We will now focus on the models for risk/ambiguity and the approach how to extract the

parameters. In particular, we consider two types of utility functions capturing the individual

preferences towards risk and ambiguity. The first class of functions is power utility for both risk

and ambiguity, implying constant relative risk aversion and constant relative ambiguity aversion

(CRRA-CRAA). The second class is exponential utility for both risk and ambiguity, implying

constant absolute risk aversion and constant absolute ambiguity aversion (CARA-CAAA). We

will discuss both classes of utility functions and the extraction method for the parameters of

risk aversion and ambiguity aversion in order.

4.3.1 Power Utility Function (Method 1)

As mentioned above, the first stage of obtaining individual attitudes consists of estimating the

parameter of risk aversion. Thus, based on the observations from List 3, we can estimate the

parameter of risk aversion γ from the utility function in a risk-only situation. We have:

V (m, γ) =
m

100
10(1−γ), (13)

with m representing the number of white balls in the urn. By the BDM mechanism we

observe the (empirical) sure equivalent Se(m) and so we get:

S(1−γ)
e =

m

100
10(1−γ) (14)

log
Se
10

=
1

1− γ
log

m

100
. (15)

From this linear equation for the dependent variable logSe and the independent variable

log m
100

, we can estimate γ form all observations m > 0 of a subject.

The second stage consists of estimating the parameter of ambiguity aversion. We follow

KKM, according to which ambiguity aversion is represented by a concave deformation of second

order beliefs. Since the nature of ambiguity differs in the three treatment involving both risk

and ambiguity, the utility functions differ for Lists 4-6. For the setting of List 4, we assume

that the utility function is given by:

V (m, γ, η) =
100∑
k=m

1

101−m

(
k

100
10(1−γ)

)(1−η)

, (16)

with m representing the minimum number of white balls in the urn and γ (η) representing

the degree of risk (ambiguity) aversion. Correspondingly, the sure equivalent of a decision

maker who is characterized by an ambiguity utility function with parameter η in List 4 is given

by:
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S(m, γ, η)(1−γ)(1−η) =
100∑
k=m

1

101−m

(
k

100
10(1−γ)

)(1−η)

(17)

S(m, γ, η) = 10

(
1

101−m

100∑
k=m

(
k

100

)(1−γ)
) 1

(1−γ)(1−η)

. (18)

We observe Se(m), and γ is known from List 3. So we estimate η by minimizing the sum of

squared errors:

∑
m

(Se(m)− S(m, γ, η))2 (19)

For List 5, we estimate η in an analogous way to the above least square method with:

S(m, γ, η) = 10

(
1

101− 2m

100−m∑
k=m

(
k

100

)(1−γ)
) 1

(1−γ)(1−η)

, (20)

where m is the minimum number of white and black balls.

For decisions in List 6, subjects can choose between a risky lottery (choosing white as the

winning color) and a lottery also involving ambiguity. They will maximize max{V (m, γ, η|color 6=
white)V (m, γ, η = 0, color = white)}. An ambiguity-neutral decision maker would choose

white only if the number of white balls is greater than 33. If m is now the number of white

balls, we get for:

S(1−γ)(1−η) =


m
100

10(1−γ) if the color is white and m > 33

∑100−m
k=0

1
101−m

(
k

100
10(1−γ))(1−η) else

S(m, γ, η) =

 10
(
m
100

) 1
(1−γ) if the color is white and m > 33

10
(

1
101−m

∑100
k=m

(
k

100

)(1−γ)) 1
(1−γ)(1−η)

else

and again we choose η so that S(·) is the best fit to the observed data Se (in the sense of

the least-square method).

Remark : The term 0(1−α) is not defined for α > 1. Hence, in some cases, S(·) is not

defined, and we have to restrict the regression to a subset of observations. The estimation of

γ is restricted to the observations m > 0 (the number of white balls). In the same way the

estimation of ηl in List 4 and 5 is restricted to the observation where the minimum number of

unsure white balls is greater then 0. In List 6, the minimum number of winning balls in the

ambiguity urn is 0 for all observations. Thus, we have to restrict η6 to values smaller or equal

to 1. For our computation we restricted our search for the best ηl to values in the interval
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[−.99, 10] and for List 6 to values in [−.99, .99].

4.3.2 Exponential Utility Function (Method 2)

Let us now try another approach where risk is modeled by constant absolute risk aversion

(CARA): u(x) = exp(−λx)
−λ if λ 6= 0) and u(x) = x if λ = 0 and ambiguity is modeled by

constant absolute ambiguity aversion (CAAA): φ(ξ) = µ(−µξ)
−η if µ 6= 0) and φ(ξ) = ξ if µ = 0 .

Let Ek[u] be the expected value of an urn with k winning balls.

Ek[u] =

{
k

100
exp(−λ10)
−λ + 100−k

100
exp(−λ0)
−λ if λ 6= 0

k
10

if λ = 0
(21)

and let E[φ] be the expected value of the set of urns involving ambiguity, assuming that all

possible urns have the same probability to be chosen.

E[φ] =

{ ∑
k

1
101−m

exp(−µEk[u])
−µ if µ 6= 0∑

k
1

101−m Ek[u] if µ = 0
(22)

The sure equivalent of a decision maker who is characterized by a CARA-CAAA-utility

function is then given by:

E[φ] =
exp(−µ exp(−λS)

−λ )

−µ
(23)

We are now able to compute for any combination of λ and µ the sure equivalent for List

3 to 6. By the least-squares method we can then estimate the best approximation for the

parameters to our data set. Since in List 3, there is no ambiguity, we set µ = 0 and compute

for every subject the risk parameter λ. We separately estimate the ambiguity parameter for

Lists 4 to 6.

4.3.3 Parameter Estimates

An overview of the estimated parameters of risk aversion and ambiguity aversion is given in

Table 8. The parameter estimates based on power utility functions are displayed in Panel A,

and the parameter estimates based on exponential utility functions are displayed in Panel B.

Note that the ambiguity aversion µ will be infinity if a decision maker chose the minimum. The

results indicate that the median participant is risk-neutral, but ambiguity-averse. It is worth

noting that parameter estimates for ambiguity aversion are similar for List 4 and 5, they differ

substantially for List 6, with a much less pronounced ambiguity aversion.

4.4 Relation between risk aversion and ambiguity aversion

The relation between risk aversion and ambiguity aversion is given in Figure 6. Risk and

ambiguity aversion are captured in different ways, i.e. based on relative valuation discounts

(without assuming a particular class of utility function), based on α according to α-MEU theory,
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Table 8: Estimated parameters of risk aversion and ambiguity aversion

This table displays the estimated parameters of risk aversion and ambiguity aversion in various treatments.
Panel A displays the parameter estimates as obtained by using a power utility function (CRRA-CRAA). Panel
B displays the parameter estimates as obtained by using an exponential utility function (CARA-CAAA). γ (λ)
stands for the estimated risk aversion and η (µ) stands for the estimated ambiguity aversion. The numbers
behind η (µ) stand for the corresponding treatment.

Panel A: Power Utility
γ η4 η5 η6

Min -0.1016 -0.9900 -0.990 -0.9900
25% -0.0002 -0.1475 0.000 -0.9375
Median 0.0000 2.1500 1.700 0.1900
75% 0.2539 ∞ 8.275 0.9200
Max 0.9927 ∞ ∞ 0.9900

Panel B: Exponential Utility
λ µ4 µ5 µ6

Min -1.0000 -1.000 -1.000 -1.0000
25% -0.0070 0.000 0.000 -0.0055
Median 0.0000 0.551 0.512 0.0850
75% 0.0515 3.120 2.688 0.6985
Max 2.0320 ∞ ∞ ∞

and based on different utility functions for risk and ambiguity (power utility and exponential

utility). The four diagrams are based on the degree of ambiguity aversion estimated from List

4, 5, and 6, respectively. The diagrams confirm the results seen earlier that ambiguity-aversion

is u-shaped, with many participants showing either no ambiguity aversion or very high degrees

of ambiguity aversion. Moreover, it can be seen that there is no clear relation between risk and

ambiguity.

Table 9 displays the results of regressions relating attitudes towards ambiguity to attitudes

towards risk to determine whether they are correlated. It can be seen that in three cases, there

is a negative relation between attitudes towards risk and ambiguity, while there is a positive

relation in one case. However, only in the case of Model (1), there is a significantly negative

relation. Thus, overall, if there is any correlation between the risk aversion and the ambiguity

aversion of an individual, then it is slightly negative. This stresses the fact that risk and

ambiguity are not only two different concepts, but also that individual attitudes towards risk

and ambiguity typically differ.

So we conclude: (1) risk and ambiguity are different concepts, (2) they both matter, (3)

individual preferences concerning risk and ambiguity are largely unrelated or even negatively

related, and (4) the extent of ambiguity aversion depends on the specific decision.

5 Conclusion

This paper contributes to the growing literature on decision making under ambiguity, as a

relevant extension of decision theory under risk. To the best of our knowledge this is the
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Figure 6: Relation between risk aversion and ambiguity aversion

These diagrams display the relation between risk aversion and ambiguity aversion for the individual participants.
Three types of measures are applied, i.e. (1) relative risk discounts RRD and relative ambiguity discounts
RAD, (2) relative risk discounts RRD and ambiguity aversion measured by α, (3) estimated coefficients of risk
aversion γ and ambiguity aversion η based on power utility, and (4) estimated coefficients of risk aversion λ
and ambiguity aversion µ based on exponential utility. In each case, the measure of risk aversion is obtained
from the risk-only setting of List 3. The measure of ambiguity aversion is obtained from List 4, 5, and 6,
controlling for the risk aversion measured in List 3. While relative discounts and values for α are observed for
each setting, coefficients obtained from utility functions are observed for each list. Thus, there are 12 RRD-
RAD combinations per participant, while for the coefficients, there are three risk-ambiguity combinations per
participant. For power (exponential) utility functions, extreme coefficients of ambiguity aversion are set equal
to -1(-1) or 10(5), depending on whether they are very small or very large.
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Table 9: Relation between risk aversion and ambiguity aversion

This table displays the results of regressions relating attitudes towards ambiguity to attitudes towards risk. As
measures of ambiguity, the relative ambiguity discount RAD and the parameter of ambiguity aversion based
on power utility as well as exponential utility are applied. Model (1) is based on relative risk and ambiguity
discounts. Model (2) is based on α-MEU. Model (3) displays the results as obtained by using a power utility
function (CRRA-CRAA) for both risk and ambiguity. Model (4) displays the results as obtained by using an
exponential utility function (CARA-CAAA) for risk and ambiguity. γ (λ) stands for the estimated risk aversion
in the power utility (exponential utility) setting.

(1) (2) (3) (4)
Relative Discount Alpha Power utility Exponential utility

RRD -1.1707∗ 0.1575
(-2.34) (1.72)

γ -0.3642
(-1.38)

λ -0.3537
(-1.06)

Subject dummies yes yes yes yes
Situation dummies yes yes
List dummies yes yes yes yes
Observations 1586 1618 414 414
R2 0.266 0.279 0.633 0.630

t statistics in parentheses
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

first systematic experimental approach to measuring pure ambiguity aversion on an individ-

ual basis, and for a broad coverage of ambiguity levels, ranging from very low to very high.

This metric captures ”pure” aversion to ambiguity, because the aversion to risk as revealed

by the same subjects in a separate treatment within these experimental lists, conditional on

zero ambiguity, is netted out. The resulting pure ambiguity discounts are found to be stable

across different tasks (for the same individual), and heterogenous across individuals (for the

same task). We find roughly one third of the participants to display extreme aversion to am-

biguity, consistent with Maxmin Expected Utility theory, proposed in the early literature (e.g.

Gilboa/Schmeidler 1989). The remaining two thirds of the participants, however, are well de-

scribed by intermediate levels of ambiguity aversion, consistent with both smooth preferences

as in Klibanoff/Marinacci/Mukerji (2005), or convex preferences as in the α-MEU models by

Ghirardato/Maccheroni/Marinacci (2004).

We also find near-orthogonality between risk aversion and ambiguity aversion for the same

individuals. Another finding relates to the size of the pure ambiguity discount, which shows

an inverse u-shape for the median participant. Thus, the relative ambiguity discount tends to

be large for intermediate levels of ambiguity in our data. In the literature, in contrast, low

levels of ambiguity aversion have been reported recently, e.g. Binmore et.al. 2012, and Stahl

2012, Charness et.al. 2013. We find comparably low levels of ambiguity discounts only for the

maximum ambiguity treatments in our experiments, as well as for 3-color tasks. In both these
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cases the implied maximum level of ambiguity seems to blur the difference between risk and

uncertainty in the eyes of the decision maker.

Our results suggest a number of insights for future work. First, attitudes towards ambiguity

are relevant attributes in a general model of decision making under uncertainty. They may be

integrated in a standard expected utility framework. Second, ambiguity is a behavioral charac-

teristic distinct from risk aversion, as we find both parameters to be linearly independent. More

work is needed here, for example to explain the strikingly low discount value when ambiguity

is maximal.

Finally, the present study has focused on individual reservation prices only. A possible next

step for a systematic exploration of the effects of ambiguity on human decision making may

analyze its impact on resulting market prices, relying on an interactive, market-like setting.
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